解释代码class LeNet(torch.nn.Module): def __init__(self, input_channels, input_sample_points, classes): super(LeNet, self).__init__() self.input_channels = input_channels self.input_sample_points = input_sample_points self.features = torch.nn.Sequential( torch.nn.Conv1d(input_channels, 20, kernel_size=1), torch.nn.BatchNorm1d(20), torch.nn.MaxPool1d(2), torch.nn.Conv1d(20, 50, kernel_size=1), torch.nn.BatchNorm1d(50), torch.nn.MaxPool1d(2), ) self.After_features_channels = 50 self.After_features_sample_points = 1#原来为1,数据修改后改为2否则维度不匹配 self.classifier = torch.nn.Sequential( torch.nn.Linear(self.After_features_channels * self.After_features_sample_points, 512), torch.nn.ReLU(), torch.nn.Linear(512, classes), torch.nn.ReLU() ) def forward(self, x): # 检查输入样本维度是否有错误 if x.size(1) != self.input_channels or x.size(2) != self.input_sample_points: raise Exception( '输入数据维度错误,输入维度应为[Batch_size,{},{}],实际输入维度为{}'.format(self.input_channels, self.input_sample_points,x.size()) ) x = self.features(x) x = x.view(-1, self.After_features_channels * self.After_features_sample_points) x = self.classifier(x) return x
时间: 2024-04-27 09:25:09 浏览: 208
lbcnn.torch-master.zip_..累lbcnn;x3_LBCNN_lbp_lbp 神经网络_torch
这段代码定义了一个名为LeNet的LeNet-5模型的类。它继承了PyTorch中的nn.Module类,表示它是一个神经网络模型。
在__init__()方法中,输入参数包括输入数据的通道数(input_channels)、采样点数(input_sample_points)和类别数(classes)。在初始化方法中,首先调用父类nn.Module的构造函数,然后定义了LeNet-5的前向传播过程。
其中,特征提取部分采用了两个卷积层和池化层,采用了1D卷积和maxpooling。首先是一个输入通道数为input_channels,输出通道数为20,卷积核大小为1的卷积层,然后进行批量归一化,再进行maxpooling。随后又是一个输入通道数为20,输出通道数为50,卷积核大小为1的卷积层,然后进行批量归一化,再进行maxpooling。
之后是分类器部分,采用了两个全连接层。首先将特征图展开为一维向量,然后通过一个线性层将其映射到512维,接着通过ReLU激活函数,再通过另一个线性层将其映射到最终的类别数,最后再通过ReLU激活函数输出结果。
在forward()方法中,首先检查输入数据的维度是否符合要求,然后将数据通过特征提取部分和分类器部分依次进行前向传播,并输出最终结果。
阅读全文