题目:假定某主机使用HTTP/1.1协议访问一个Web服务器,不使用流水线,两者之间的RTT为10ms,主机请求一个大小为1MSS的HTTP文件,该文件包含一个大小为1MSS图像。此时已经完成域名解析,从TCP连接开始到收到Web服务器响应的所有请求,所需时间至少为( )。

时间: 2025-01-04 13:39:03 浏览: 5
在这个场景中,我们首先需要了解一些网络通信的基本术语: 1. **RTT (Round-Trip Time)**:即数据往返时间,包括发送请求、接收响应的时间总和,这里提到的10ms是一个固定值。 2. **MSS (Maximum Segment Size)**:在TCP/IP协议中,这是一个单个IP数据报的最大尺寸,通常大约是1460字节(IPv4)或1500字节(IPv6)加上头部信息。 3. **HTTP/1.1**:HTTP版本1.1允许一个完整的请求先发送出去,然后等待响应,这就是所谓的“一次握手”模式,而不是流水线处理,所以每次请求都是独立的。 当主机发送一个1MSS大小的HTTP请求(这通常会比1MSS稍大,因为还需要携带额外的头部信息),并且这个请求需要下载一个1MSS大小的图像,即使它们都在一个响应中,主机也需要等待两个单独的RTTs: - 第一个RTT用于发送HTTP请求并接收服务器确认请求开始的头部信息。 - 第二个RTT用于接收整个HTTP响应,其中包含了图像数据。 所以,所需的最短时间为两个10ms RTT,即: ```计算 RTT * 2 = 10ms * 2 = 20ms ``` 因此,从TCP连接开始到收到Web服务器响应的全部请求所需时间至少为20毫秒。请注意,实际等待时间可能会更长,如果服务器需要处理请求和准备响应的时间也包含在内。
相关问题

"假定要在网络中传送一个x mB大小的文件。设分组长度为y kB,往返时间rtt=z ms。传送数据之前还需要建立TCP连接,TCP连接耗费的时间是2个rtt。试计算下面两种情况下接收方收完该文件的最后一个bit所需要的时间,以秒为单位。 (1)数据发送速度为10mbit/s,数据分组可以连续发送; (2)数据发送速度为10mbit/s,但每发送一个分组后要等待一个rtt时间才能在发送下一个分组。 文件大小 x= 3.0 mB 往返时延 z= 80 ms 分组大小 y= 1.75 kB 要求: 1--题目中(k=2^10, 1G=2^10m,1m=2^10k),计算结果如果小数点后超过4位,则四舍五入,保留3位小数 2--答案只需给出数值,答案之间用空格分隔,比如1.0 2.45"

首先,我们需要计算出文件的大小以及数据分组的数量: 文件大小 x = 3.0 mB = 3.0 × 2^20 B = 3145728 B 数据分组大小 y = 1.75 kB = 1.75 × 2^10 B = 1792 B 数据分组的数量 n = x / y = 3145728 B / 1792 B = 1756 接下来,我们来计算两种情况下接收方收完该文件的最后一个bit所需要的时间。 (1)数据发送速度为10mbit/s,数据分组可以连续发送 在这种情况下,数据可以连续发送,因此可以计算出传输该文件所需的时间: 传输时间 = 文件大小 / 数据发送速度 = 3145728 B / (10 × 10^6 bit/s) = 0.3145728 s 除了传输时间,还需要考虑TCP连接的建立和分组在网络中传输所需的时间。建立TCP连接需要2个rtt的时间,因此TCP连接的建立时间为: 建立时间 = 2 × rtt = 2 × 80 ms = 0.16 s 每个数据分组需要一个rtt的时间才能收到确认,因此数据分组在网络中传输所需的时间为: 传输时间 = n × rtt = 1756 × 80 ms = 0.14048 s 因此,接收方收完该文件的最后一个bit所需要的总时间为: 总时间 = 建立时间 + 传输时间 + 分组确认时间 = 0.16 s + 0.3145728 s + 0.14048 s = 0.615 s (2)数据发送速度为10mbit/s,但每发送一个分组后要等待一个rtt时间才能在发送下一个分组 在这种情况下,每个数据分组需要等待一个rtt的时间才能发送下一个分组,因此传输该文件所需的时间为: 传输时间 = n × (rtt + 数据分组传输时间) = n × (rtt + 数据分组大小 / 数据发送速度) = 1756 × (80 ms + 1792 B / (10 × 10^6 bit/s)) = 0.436736 s 同样,需要考虑TCP连接的建立和分组在网络中传输所需的时间,因此接收方收完该文件的最后一个bit所需要的总时间为: 总时间 = 建立时间 + 传输时间 + 分组确认时间 = 0.16 s + 0.436736 s + 0.14048 s = 0.737 s 因此,接收方收完该文件的最后一个bit所需要的时间分别为 0.615 s 和 0.737 s。

假定要在网络上传送1.5MB的文件。设分组长度为1KB,往返时间RTT=80ms。传送数据之前还需要有建立TCP连接的时间,这时间是2×RTT=160ms。试计算在以下几种情况下接收方收完该文件的最后一个比特所需的时间。 (1)数据发送速率为10Mb/s,数据分组可以连续发送。 (2)数据发送速率为10Mb/s,但每发送完一个分组后要等待一个RTT时间才能再发送一个分组。 (3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。 (4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即23-1=22=4个分组)

好的,根据您的要求,我已经记录下了您的问题。下面是针对您的问题的解答: 首先,我需要将1.5MB转换为比特数,即12Mb。然后,我们可以根据数据发送速率和分组长度计算出每个分组的传输时间。因为分组长度为1KB,所以每个分组传输时间为8ms。此外,由于需要建立TCP连接,因此需要额外的160ms时间。 (1)数据发送速率为10Mb/s,数据分组可以连续发送。 在这种情况下,每个分组的传输时间为8ms,因此可以连续发送分组,不需要等待。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 = 数据量 / 速率 + 2 × RTT = (12Mb / 10Mb/s) + 2 × 80ms = 1.2s + 160ms = 1.36s 因此,接收方需要1.36秒的时间才能接收完该文件的最后一个比特。 (2)数据发送速率为10Mb/s,但每发送完一个分组后要等待一个RTT时间才能再发送一个分组。 在这种情况下,每个分组的传输时间为8ms,但需要等待一个RTT时间(80ms)才能发送下一个分组。因此,在发送每个分组后,需要等待(2 × 80ms)的时间,然后才能发送下一个分组。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 数据量 / 速率 + 2 × RTT + (分组数 - 1) × 2 × RTT = (12Mb / 10Mb/s) + 2 × 80ms + (1500 - 1) × 2 × 80ms = 1.2s + 240ms + 238 × 80ms = 20.96s 因此,接收方需要20.96秒的时间才能接收完该文件的最后一个比特。 (3)数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。 在这种情况下,可以不考虑发送数据所需的时间。但是,规定在每个RTT往返时间内只能发送20个分组,因此需要计算分组数。每个分组的传输时间为8ms,因此在一个RTT时间内可以发送20个分组,即160KB的数据。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 分组数 × 分组大小 / 速率 + (分组数 / 20) × 2 × RTT + 2 × RTT = 1500KB / 10Mb/s + (1500 / 20) × 2 × 80ms + 2 × 80ms = 0.15s + 240ms + 160ms = 550ms 因此,接收方需要550ms的时间才能接收完该文件的最后一个比特。 (4)数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即23-1=22=4个分组) 在这种情况下,可以不考虑发送数据所需的时间。但是,在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组。因此,需要计算每个RTT时间内发送的分组数。每个分组的传输时间为8ms,因此在一个RTT时间内可以发送的分组数为: 第一个RTT:1个分组 第二个RTT:2个分组 第三个RTT:4个分组 因此,在每个RTT时间内发送的分组数为7个。因此,整个文件的传输时间为: 传输时间 = 数据传输时间 + 建立连接时间 + 等待时间 = 分组数 × 分组大小 / 速率 + (分组数 / 7) × 2 × RTT + 2 × RTT = 1500KB / 10Mb/s + (1500 / 7) × 2 × 80ms + 2 × 80ms = 0.15s + 342.86ms + 160ms = 652.86ms 因此,接收方需要652.86ms的时间才能接收完该文件的最后一个比特。
阅读全文

相关推荐

最新推荐

recommend-type

STM32 RTT学习笔记(三)SPI FLASH

在my_spi_flash.c文件中,创建一个名为sfud_w25q_sample的示例函数,用于演示如何通过SFUD框架访问SPI Flash。SFUD框架提供了高层接口,可以简化与SPI Flash的交互,同时也支持I/O设备管理层的统一管理接口。 在...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->