mu1, sigma1 = np.mean(real_activations, axis=0), np.cov(real_activations, rowvar=False) mu2, sigma2 = np.mean(fake_activations, axis=0), np.cov(fake_activations, rowvar=False)
时间: 2024-03-04 07:50:32 浏览: 147
vgg_kdtree2.rar_kdtree_kdtree matlab_图像检索 matlab_实现vgg
5星 · 资源好评率100%
这段代码使用`np.mean()`和`np.cov()`函数分别计算了真实激活值和生成器生成的假激活值的均值和协方差矩阵。具体来说,`np.mean(real_activations, axis=0)`表示计算真实激活值的每一列的均值,即每一个神经元在样本上的平均激活值。`np.cov(real_activations, rowvar=False)`表示计算真实激活值的每一列之间的协方差矩阵,即每一个神经元之间的协方差关系。
同样,`np.mean(fake_activations, axis=0)`表示计算生成器生成的假激活值的每一列的均值,即每一个神经元在样本上的平均激活值。`np.cov(fake_activations, rowvar=False)`表示计算生成器生成的假激活值的每一列之间的协方差矩阵,即每一个神经元之间的协方差关系。
这些统计量可以用于计算两个分布之间的距离或差异,比如Wasserstein距离和KL散度等。在GAN中,我们通常通过最小化这些距离或差异来训练生成器和判别器的模型参数。
阅读全文