import numpy as np import matplotlib.pyplot as plt # 生成sin函数数据 x = np.arange(0, 2*np.pi, 0.1) y = np.sin(x) # 可视化sin函数 plt.plot(x, y) plt.show() from keras.models import Sequential from keras.layers import Dense, SimpleRNN # 准备数据 dataX, dataY = [], [] for i in range(len(y)-1): dataX.append(y[i:i+1]) dataY.append(y[i+1]) dataX = np.array(dataX) dataY = np.array(dataY) # 划分训练集和测试集 train_size = int(len(dataY) * 0.7) test_size = len(dataY) - train_size trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)]) trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)]) # 调整输入数据的形状 trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # 定义模型结构 model = Sequential() model.add(SimpleRNN(units=10, input_shape=(1, 1))) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(trainX, trainY, epochs=1000, validation_data=(testX, testY)) # 可视化损失函数 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show()梯度可视化代码
时间: 2024-03-10 11:50:41 浏览: 43
以下是使用keras-vis库对梯度进行可视化的代码示例:
```
from keras.models import Model
from vis.visualization import visualize_saliency
from vis.utils import utils
from keras import activations
# 获取模型中的第一层SimpleRNN和输出层Dense
layer_idx = utils.find_layer_idx(model, 'simple_rnn')
output_layer_idx = utils.find_layer_idx(model, 'dense')
# 构建可视化对象
grads = visualize_saliency(model, layer_idx, filter_indices=None,
seed_input=trainX[0], backprop_modifier='guided')
# 可视化梯度
plt.imshow(grads, cmap='jet')
# 构建可视化对象
grads = visualize_saliency(model, output_layer_idx, filter_indices=None,
seed_input=trainX[0], backprop_modifier='guided',
grad_modifier='negate')
# 可视化梯度
plt.imshow(grads, cmap='jet')
```
其中,`visualize_saliency`函数的第一个参数为模型对象,第二个参数为需要可视化的层的索引,第三个参数为过滤器索引(可以为空),第四个参数为种子输入数据,`backprop_modifier`和`grad_modifier`为对梯度进行修正的方式。这里使用了`guided`和`negate`修正方式。
阅读全文