请给我用pytorch和DDQN实现MountainCar的强化学习的完整代码
时间: 2024-02-11 13:08:47 浏览: 163
好的,下面是代码:
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
from collections import deque
# 定义神经网络
class Net(nn.Module):
def __init__(self, n_states, n_actions):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_states, 64)
self.fc2 = nn.Linear(64, 64)
self.out = nn.Linear(64, n_actions)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.out(x)
return x
# 定义经验回放缓存
class ReplayBuffer():
def __init__(self, buffer_size):
self.buffer = deque(maxlen=buffer_size)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state_batch = torch.cat([torch.tensor([exp[0]]) for exp in batch])
action_batch = torch.tensor([exp[1] for exp in batch])
reward_batch = torch.tensor([exp[2] for exp in batch])
next_state_batch = torch.cat([torch.tensor([exp[3]]) for exp in batch])
done_batch = torch.tensor([exp[4] for exp in batch])
return state_batch, action_batch, reward_batch, next_state_batch, done_batch
def __len__(self):
return len(self.buffer)
# 定义DDQN算法
class DDQNAgent():
def __init__(self, env):
self.env = env
self.n_states = env.observation_space.shape[0]
self.n_actions = env.action_space.n
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.policy_net = Net(self.n_states, self.n_actions).to(self.device)
self.target_net = Net(self.n_states, self.n_actions).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=0.001)
self.memory = ReplayBuffer(10000)
self.batch_size = 64
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.steps = 0
self.update_freq = 1000
def select_action(self, state):
if random.random() < self.epsilon:
return self.env.action_space.sample()
else:
with torch.no_grad():
state = torch.tensor(state, dtype=torch.float).to(self.device)
q_values = self.policy_net(state)
action = q_values.argmax().item()
return action
def train(self):
if len(self.memory) < self.batch_size:
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
q_values = self.policy_net(state_batch).gather(1, action_batch.unsqueeze(1)).squeeze(1)
next_q_values = self.target_net(next_state_batch).max(1)[0]
expected_q_values = reward_batch + (1 - done_batch) * self.gamma * next_q_values
loss = F.mse_loss(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.steps += 1
if self.steps % self.update_freq == 0:
self.target_net.load_state_dict(self.policy_net.state_dict())
def run(self, episodes):
for episode in range(episodes):
state = self.env.reset()
total_reward = 0
done = False
while not done:
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
total_reward += reward
self.memory.add((state, action, reward, next_state, done))
self.train()
state = next_state
if done:
break
print("Episode: {}, Total reward: {}, Epsilon: {:.2f}".format(episode, total_reward, self.epsilon))
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 运行代码
env = gym.make("MountainCar-v0")
agent = DDQNAgent(env)
agent.run(1000)
```
注意:这段代码需要使用pytorch和gym库,并且由于MountainCar环境比较简单,所以只需要运行1000个episode就可以得到比较好的结果。如果需要在更复杂的环境中使用DDQN进行强化学习,可能需要更多的episode和更大的经验回放缓存。
阅读全文