解释cnn_model_history = cnn_model.fit_generator( train_generator, steps_per_epoch=nb_train_samples// batch_size , epochs=epochs, validation_data=test_generator, validation_steps=nb_validation_samples// batch_size, workers = 4)
时间: 2024-04-01 07:35:45 浏览: 59
这行代码是用来训练CNN模型的。下面是这行代码中每个参数的解释:
- `train_generator`:这是训练数据生成器。
- `steps_per_epoch=nb_train_samples // batch_size`:这是每个epoch中的训练步数。nb_train_samples是训练集的样本数量,batch_size是每个批次中的样本数量。因此,steps_per_epoch是将训练集分成batch_size大小的批次后的步数。
- `epochs=epochs`:这是训练的epoch数。一个epoch是指将所有训练数据都过一遍网络的过程。
- `validation_data=test_generator`:这是用于验证的数据生成器。
- `validation_steps=nb_validation_samples // batch_size`:这是每个epoch中的验证步数。nb_validation_samples是验证集的样本数量,batch_size是每个批次中的样本数量。因此,validation_steps是将验证集分成batch_size大小的批次后的步数。
- `workers=4`:这是用于生成器的线程数。
这行代码的返回值是一个History对象,它包含训练过程中的所有信息,例如训练和验证的损失和准确率等。这些信息可以用来进行模型性能的分析和可视化。
相关问题
cnn_model_history = cnn_model.fit_generator( # 训练数据生成器 train_generator, steps_per_epoch=nb_train_samples// batch_size , epochs=epochs, validation_data=test_generator, validation_steps=nb_validation_samples// batch_size, workers = 4)的作用是什么
这段代码的作用是使用生成器来训练卷积神经网络模型,并返回训练过程中的历史记录。具体来说,这段代码中:
- train_generator和test_generator是训练数据集和测试数据集的生成器,用于产生训练样本和标签。
- steps_per_epoch是每个epoch需要迭代的步数,由训练样本数(nb_train_samples)和批次大小(batch_size)计算得出。
- epochs是训练轮数,即模型需要训练几次。
- validation_data是验证集的数据和标签,用于检测模型在训练过程中的性能。
- validation_steps是每个epoch需要验证的步数,由验证集样本数(nb_validation_samples)和批次大小(batch_size)计算得出。
- workers是用于训练的进程数,它可以加速模型的训练过程。
最后,cnn_model_history将返回一个记录训练过程中损失和指标的字典,包括训练集和验证集的损失、准确率等信息。通过这些信息,我们可以了解模型在训练过程中的性能表现,并根据需要进行调整和优化。
from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误
在段代码中,有一些错误和需要注意的地方:
1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。
2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。
3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。
4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。
下面是修改后的代码:
```python
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
img_width, img_height = 256, 256
batch_size = 16
epochs = 50
train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train'
validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1'
OUT_CATAGORIES = 1
nb_train_samples = 2000
nb_validation_samples = 100
base_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3))
base_model.summary()
for layer in base_model.layers[:15]:
layer.trainable = False
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid'))
model = Model(inputs=base_model.input,
outputs=top_model(base_model.output))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2,
workers=12)
score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size))
scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size))
```
阅读全文