Resnet网络如何正则化
时间: 2024-03-31 18:32:36 浏览: 169
ResNet网络在训练过程中使用了两种正则化方法:
1. 权重衰减(weight decay):在网络的损失函数中加入一个正则化项,使得网络中的权重参数被强制保持较小的值,从而防止过拟合。
2. 批量归一化(batch normalization):在每个卷积层或全连接层后添加一个归一化层,将每个特征图的均值和方差进行平移和缩放,从而使得网络的输入更加稳定,减少了网络对输入分布的依赖,也可以起到一定的正则化效果。
这些正则化方法不仅可以帮助ResNet网络避免过拟合,还可以加速网络的收敛速度和提高网络的泛化能力。
相关问题
resnet18模型中加入正则化的代码
可以通过在网络的定义中加入正则化方法来实现。常用的正则化方法包括L1正则化和L2正则化,可以在网络定义中通过调用相关的函数来实现。比如,在PyTorch中,在定义网络时可以在每个卷积层或全连接层后添加一个正则化方法,如下所示:
``` python
import torch.nn as nn
class ResNet18(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
# Residual block 1
self.conv2_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2_1 = nn.BatchNorm2d(64)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2_2 = nn.BatchNorm2d(64)
self.relu2_2 = nn.ReLU(inplace=True)
self.residual1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(64)
)
# Residual block 2
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
self.bn3_1 = nn.BatchNorm2d(128)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3_2 = nn.BatchNorm2d(128)
self.relu3_2 = nn.ReLU(inplace=True)
self.residual2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(128)
)
# Residual block 3
self.conv4_1 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
self.bn4_1 = nn.BatchNorm2d(256)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn4_2 = nn.BatchNorm2d(256)
self.relu4_2 = nn.ReLU(inplace=True)
self.residual3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(256)
)
# Residual block 4
self.conv5_1 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.bn5_1 = nn.BatchNorm2d(512)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.bn5_2 = nn.BatchNorm2d(512)
self.relu5_2 = nn.ReLU(inplace=True)
self.residual4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(512)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
self.dropout = nn.Dropout(p=0.5) # 添加dropout正则化
self.relu = nn.ReLU(inplace=True)
self.init_weights()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# Residual block 1
residual = self.residual1(x)
x = self.conv2_1(x)
x = self.bn2_1(x)
x = self.relu2_1(x)
x = self.conv2_2(x)
x = self.bn2_2(x)
x += residual
x = self.relu2_2(x)
# Residual block 2
residual = self.residual2(x)
x = self.conv3_1(x)
x = self.bn3_1(x)
x = self.relu3_1(x)
x = self.conv3_2(x)
x = self.bn3_2(x)
x += residual
x = self.relu3_2(x)
# Residual block 3
residual = self.residual3(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x += residual
x = self.relu4_2(x)
# Residual block 4
residual = self.residual4(x)
x = self.conv5_1(x)
x = self.bn5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.bn5_2(x)
x += residual
x = self.relu5_2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.dropout(x) # 加上dropout
return x
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
```
这样,在每个全连接层后面都会添加一个dropout操作,用于防止过拟合。
pytorch正则化
在PyTorch中,正则化可以通过使用Dropout和LayerNorm两种方式来实现。
对于Dropout,可以使用torch.nn.Dropout(p=0.5, inplace=False)来定义一个Dropout层。其中,p表示舍弃概率,即神经元被舍弃的概率。
对于LayerNorm,可以使用nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True)来定义一个LayerNorm层。其中,normalized_shape表示输入的形状,eps表示对分母的一个小的正数常量,用来防止除以0的情况发生,elementwise_affine表示是否使用可学习的gamma和beta参数来进行仿射变换。
这些方法可以帮助在训练深度神经网络时进行正则化,以减少模型的过拟合问题,提高模型的泛化能力。
此外,如果你对PyTorch中的正则化方法有兴趣,你可以参考Github上的一个实现示例,链接为https://github.com/PanJinquan/pytorch-learning-tutorials/blob/master/image_classification/train_resNet.py。如果你觉得这个项目对你有帮助,可以给它一个"Star"来支持作者。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Pytorch学习笔记十六:正则化](https://blog.csdn.net/Dear_learner/article/details/124140775)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [pytorch实现L2和L1正则化regularization的方法](https://blog.csdn.net/guyuealian/article/details/88426648)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文