实现单循环链表的初始化、求数据元素个数、插入、删除、取数据元素等操作;用插入法建立带头结点的单循环链表

时间: 2023-05-01 19:04:58 浏览: 104
这个问题的意思是:如何实现单循环链表的初始化、求数据元素个数、插入、删除、取数据元素等操作;并且用插入法建立带头结点的单循环链表。 回答: 1. 单循环链表的初始化:将头结点的指针域指向自己即可。 2. 求数据元素个数:从头结点开始遍历整个链表,计数即可。 3. 插入操作:先找到要插入的位置,将新节点的指针域指向插入位置的下一个节点,再将插入位置的后继节点指针域指向新节点。 4. 删除操作:先找到要删除的位置,将删除位置的前驱节点指针域指向删除位置的后继节点,再将删除节点释放。 5. 取数据元素操作:先找到要取出的位置,返回该位置节点的数据元素即可。 6. 插入法建立带头结点的单循环链表:先建立一个头结点,然后按照插入操作不断在链表尾部插入新节点。最后将链表的最后一个节点的指针域指向头结点即可。
相关问题

如何初始化单循环链表

初始化单循环链表的步骤如下: 1. 创建一个空的头结点,并将其指针指向自身,即头结点的next指针指向自身。这样可以保证循环链表始终有一个头结点。 2. 如果需要初始化链表中的其他结点,可以按照以下步骤进行: - 创建一个新的结点。 - 将新结点的数据域赋值为所需的值。 - 将新结点的next指针指向头结点的下一个结点。 - 将头结点的next指针指向新结点,完成插入操作。 3. 重复步骤2,直到所有结点都被插入到链表中。 这样,单循环链表就被成功初始化了。在单循环链表中,头结点的next指针永远指向链表的第一个结点,而最后一个结点的next指针指向头结点,形成了一个闭环。这样就可以通过任意结点都能访问到链表中的所有结点。

如果采用带尾指针的单循环链表(带头结点)作为队列的存储结构,设计算法以实现队列的各运算。

对于带尾指针的单循环链表作为队列的存储结构,我们可以设计以下算法实现队列的各运算: 1. 初始化队列:创建一个带头结点的单循环链表,将头结点的指针域和尾指针都指向头结点。 2. 判断队列是否为空:判断头结点的指针域是否指向头结点,如果是,则队列为空。 3. 入队操作:创建一个新节点,将数据存入新节点中,将新节点插入到尾指针所指向的节点之后,并将尾指针指向新节点。 4. 出队操作:将头结点的指针域指向下一个节点,将头结点所指向的节点删除,并返回该节点中存储的数据。 5. 获取队头元素:返回头结点的指针域所指向的节点中存储的数据。 6. 获取队列长度:从头结点开始遍历链表,统计节点个数,即为队列长度。 以上就是基于带尾指针的单循环链表实现队列的算法。

相关推荐

LinkList InitRing(int n, LinkList R) //尾插入法建立单循环链表函数 { ListNode *p, *q; int I; R=q=(LinkNode *)malloc(sizeof(LinkNode)); for(i=1;i<n;i++){ p=(LinkNode *)malloc(sizeof(LinkNode)); q->data=i; q->next=p; q=p; } p->data=n; p->next=R; R=p; return R; } LinkList DeleteDeath(int n, int k, LinkList R) //生者与死者的选择 { int i, j; ListNode *p, *q; p=R; for(i=1; i<n/2; i++){ //删除一半结点 for(j=1; j<k-1; j++) //沿链前进k-1步 p=p->next; q=p->next; p->next=q->next; printf(“%4d”, q->data); free(q); } R=p; return R; } void OutRing(int n, LinkList R){ //输出所有生者 int i; LinkNode *p; p=R; for(i=1;i<=n/2; i++, p=p->next){ printf(“%4d”, p->data) } } 有了上述算法分析和设计之后,实现就比较简单了。首先要定义一个链表结构类型,然后编写一个主函数调用上面已定义好的函数即可。主函数的源程序如下: #include<stdio.h> #include<stdlib.h> typedef struct node{ int data; struct node * next; }ListNode; typedef ListNode * LinkList; void main(){ LinkList R; int n,k; LinkList InitRing(int n, LinkList R); LinkList DeleteDeath(int n, int k, LinkList R); void OutRing(int n, LinkList R); printf(“总人数n. 报数上限k=”); scanf(“%d%d”,&n, &k); R=InitRing(n, R); R=DeleteDeath(n, k, R); OutRing(n, R); } 5 运行结果 编译运行上述程序,提示:总人数n. 报数上限k= 输入30和9后并“回车”可得出如下结果: 9 18 27 6 16 26 7 19 30 12 24 8 22 5 23 21 25 28 29 1 2 3 4 10 11 13 14 15 17 20

最新推荐

C语言实现带头结点的链表的创建、查找、插入、删除操作

主要介绍了C语言实现带头结点的链表的创建、查找、插入、删除操作方法,对于了解数据结构中链表的各项操作有很好的借鉴价值,需要的朋友可以参考下

多图表实现员工满意度调查数据分析python

员工满意度是指员工对于工作环境、待遇、职业发展和组织管理等方面的满意程度。它是衡量员工对工作的整体感受和情绪状态的重要指标。

2020届软件工程本科毕业生毕业设计项目.zip

2020届软件工程本科毕业生毕业设计项目

stc12c5a60s2 例程

stc12c5a60s2 单片机的所有功能的实例,包括SPI、AD、串口、UCOS-II操作系统的应用。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

margin-top: 50%;

margin-top: 50%; 是一种CSS样式代码,用于设置元素的上边距(即与上方元素或父级元素之间的距离)为其父元素高度的50%。 这意味着元素的上边距将等于其父元素高度的50%。例如,如果父元素的高度为100px,则该元素的上边距将为50px。 请注意,这个值只在父元素具有明确的高度(非auto)时才有效。如果父元素的高度是auto,则无法确定元素的上边距。 希望这个解释对你有帮助!如果你还有其他问题,请随时提问。

Android通过全局变量传递数据

在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和访问 除非是Web服务器停止 Android中的全局对象非常类似于Java Web中的Application域 除非是Android应用程序清除内存 否则全局对象将一直可以访问 1 定义一个类继承Application public class MyApp extends Application 2 在AndroidMainfest xml中加入全局变量 android:name &quot; MyApp&quot; 3 在传数据类中获取全局变量Application对象并设置数据 myApp MyApp getApplication ; myApp setName &quot;jack&quot; ; 修改之后的名称 4 在收数据类中接收Application对象 myApp MyApp getApplication ;">在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和 [更多]

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向

![【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 车牌识别技术简介 车牌识别技术是一种通过计算机视觉和深度学习技术,实现对车牌字符信息的自动识别的技术。随着人工智能技术的飞速发展,车牌识别技术在智能交通、安防监控、物流管理等领域得到了广泛应用。通过车牌识别技术,可以实现车辆识别、违章监测、智能停车管理等功能,极大地提升了城市管理和交通运输效率。本章将从基本原理、相关算法和技术应用等方面介绍