sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show()改成导出混淆矩阵图片文件

时间: 2024-02-18 07:06:12 浏览: 168
要将混淆矩阵保存为图片文件,您可以使用`matplotlib`库中的`savefig`函数。可以按照以下步骤进行操作: 1. 导入`matplotlib`库: ```python import matplotlib.pyplot as plt ``` 2. 绘制热力图并隐藏显示: ```python plt.imshow(confusion_mat, cmap="Blues") plt.colorbar() plt.title("Confusion Matrix") plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.xticks(ticks=range(len(labels)), labels=labels, rotation=45) plt.yticks(ticks=range(len(labels)), labels=labels) plt.tight_layout() plt.savefig("confusion_matrix.png") ``` 3. 保存图片文件: ```python plt.savefig("confusion_matrix.png") ``` 以上代码将生成一个名为`confusion_matrix.png`的图片文件,保存在当前工作目录下。您可以将文件名更改为您喜欢的名称和路径。
相关问题

def show_matrix(y_test, y_pred): # 定义一个函数显示混淆矩阵 y_test=y_test.detach().numpy() y_pred=y_pred.detach().numpy() print(y_test) cm = confusion_matrix(y_test,y_pred) # 调用混淆矩阵 plt.title("ANN Confusion Matrix") # 标题 sns.heatmap(cm,annot=True,cmap="Blues",fmt="d",cbar=False) # 热力图设定 plt.show() # 显示混淆矩阵

这段代码定义了一个名为`show_matrix`的函数,用于显示混淆矩阵。下面是完整的代码: ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix def show_matrix(y_test, y_pred): y_test = y_test.detach().numpy() y_pred = y_pred.detach().numpy() print(y_test) cm = confusion_matrix(y_test, y_pred) plt.title("ANN Confusion Matrix") sns.heatmap(cm, annot=True, cmap="Blues", fmt="d", cbar=False) plt.show() ``` 该函数的输入参数`y_test`和`y_pred`是模型的真实标签和预测结果。首先,将它们转换为NumPy数组(假设它们是PyTorch张量)。然后,使用`confusion_matrix`函数计算混淆矩阵。接下来,使用Matplotlib和Seaborn绘制热力图来可视化混淆矩阵。最后,使用`plt.show()`显示混淆矩阵。 请确保已经导入所需的库(numpy、matplotlib、seaborn、sklearn.metrics)并将真实标签和预测结果传递给`show_matrix`函数以进行调用。

将后面代码绘制的图保存的代码from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # 预测结果和真实结果 y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2] y_pred = [0, 1, 1, 0, 2, 1, 0, 2, 2] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred) # 可视化混淆矩阵 sns.set() sns.heatmap(cm, annot=True, cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.show()

以下是将代码中绘制的图保存到本地的代码: ```python from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # 预测结果和真实结果 y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2] y_pred = [0, 1, 1, 0, 2, 1, 0, 2, 2] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred) # 可视化混淆矩阵 sns.set() sns.heatmap(cm, annot=True, cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.savefig('confusion_matrix.png') plt.show() ``` 这段代码会将绘制的混淆矩阵保存为当前工作路径下的 `confusion_matrix.png` 文件。您可以根据需要修改文件名和路径。
阅读全文

相关推荐

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report, roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)输出混淆矩阵图片以及各分类精度

from sklearn.datasets import load_iris from sklearn. model_selection import train_test_split from sklearn.metrics import classification_report from sklearn. neighbors import KNeighborsClassifier from sklearn. metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn. metrics import confusion_matrix import seaborn as sns import scikitplot as skplt #加载数据集 iris = load_iris() data = iris['data'] label = iris['target'] #数据集的划分 x_train,x_test,y_train,y_test = train_test_split(data,label,test_size=0.3) print(x_train) #模型构建 model = KNeighborsClassifier(n_neighbors=5) model.fit(x_train,y_train) #模型评估 #(1)精确率,召回率,F1分数,准确率(宏平均和微平均) predict = model. predict(x_test) result = classification_report(y_test,predict) print(result) # (2) 混淆矩阵 confusion_matrix = confusion_matrix(y_test, predict) print('混淆矩阵:', confusion_matrix) sns.set(font_scale=1) sns.heatmap(confusion_matrix, annot=True, annot_kws={"size", 16}, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.ylabel('True label' ) plt.xlabel('Predicted label') plt.savefig('Confusion matrix. pdf') plt.show() #(3)ROC曲线 Y_pred_prob = model. predict_proba(x_test) plt.figure(figsize= (7,7)) ax= plt. subplot() skplt.metrics.plot_roc_curve(y_test,Y_pred_prob,ax= ax) ax.set_xlabel('False Positive Rate', fontsize = 20) ax.set_ylabel('True Positive Rate ',fontsize = 20) ax.set_title('ROC Areas ',fontsize = 20) plt.xlim((0, 1)) plt.ylim((0, 1)) plt.xticks(fontsize = 18) plt.yticks(fontsize = 18) plt.legend(fontsize =18) plt.savefig(' ROC.pdf') plt.show( ) #(4)P_R曲线 from sklearn.metrics import precision_recall_curve precision, recall, _ =precision_recall_curve(y_test) plt.fill_between(recall, precision,color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.0]) plt.xlim([0.0, 1.0]) plt.plot(recall, precision) plt.title("Precision-Recall") plt.show()

最新推荐

recommend-type

自动删除hal库spendsv、svc以及systick中断

自动删除hal库spendsv、svc以及systick中断
recommend-type

流量主小程序 多功能工具箱小程序源码-操作简单实用.zip

这是一款多功能工具箱小程序! 目前由N款小功能组合成 比如: 图片拼接 九宫格切图 透明昵称 文字表情 等等上面说的只是一部分
recommend-type

基于Simulink的PEMFC燃料电池机理模型(密歇根大学开发,涵盖空压机、空气路、氢气路及电堆仿真),基于Simulink的PEMFC燃料电池机理模型(密歇根大学开发,涵盖空压机、空气路、氢气路及

基于Simulink的PEMFC燃料电池机理模型(密歇根大学开发,涵盖空压机、空气路、氢气路及电堆仿真),基于Simulink的PEMFC燃料电池机理模型(密歇根大学开发,涵盖空压机、空气路、氢气路及电堆仿真),基于simulink建立的PEMFC燃料电池机理模型(国外团队开发的,密歇根大学),包含空压机模型,空气路,氢气路,电堆等模型。 可以正常进行仿真。 ,PEMFC燃料电池模型; 空压机模型; 空气路模型; 氢气路模型; 电堆模型; 仿真。,密歇根大学PEMFC燃料电池机理模型:Simulink仿真空氢电堆一体化模型
recommend-type

OBC车载充电机硬件原理图和软件源码解析:6.6kw充电功率领先国内标准,符合国标规定,符合最新国标的高质量OBC车载充电机6.6kw 国产领导者源码全硬图解表现最佳技术标杆,OBC车载充电机6.6k

OBC车载充电机硬件原理图和软件源码解析:6.6kw充电功率领先国内标准,符合国标规定,符合最新国标的高质量OBC车载充电机6.6kw 国产领导者源码全硬图解表现最佳技术标杆,OBC车载充电机6.6kw,国内OBC车载充电机NO.1 硬件原理图和软件源码符合15年国标。 ,OBC车载充电机; 6.6kw; 国内领先; 硬件原理图; 软件源码; 15年国标; 符合标准。,国内领先OBC车载充电机6.6kw,遵循15年国标,硬件原理图与软件源码全解析
recommend-type

Rust开发环境选型指南:主流IDE介绍与配置教程

内容概要:本文详细介绍了几种常用的Rust开发环境,分别为Visual Studio Code(VSCode)、IntelliJ IDEA、CLion、RustRover及其他如Atom和Sublime Text编辑器,还涵盖了必要的调试工具和开发工具。文中详述了各集成开发环境的功能特色,如rust-analyzer提供的代码补全、类型检查;CodeLLDB支持下的VSCode能够便捷地进行程序调试,同时也列举了安装步骤以辅助读者建立完整的Rust开发环境。对于想要深入掌握不同Rust开发环境下工作的程序员而言,这是很好的指南性文章。 适用人群:对构建高效稳定的Rust应用有兴趣的学生,有一定编程经验并计划转学Rust的人群或是已经在从事嵌入式系统或其他性能敏感领域的专业开发人员。 使用场景及目标:旨在帮助用户找到适合自己的Rust开发工具集,降低入门门槛;提高生产力;增强解决问题的能力。 其他说明:特别指出VSCode作为新手友好选项的原因在于其易用性和灵活性;而对于追求更高效率和支持度的专业人士,则推荐考虑由JetBrains公司推出的产品如RustRover或CLion。
recommend-type

世界地图Shapefile文件解析与测试指南

标题中提到的“世界地图的shapefile文件”,涉及到两个关键概念:世界地图和shapefile文件格式。首先我们来解释这两个概念。 世界地图是一个地理信息系统(GIS)中常见的数据类型,通常包含了世界上所有或大部分国家、地区、自然地理要素的图形表达。世界地图可以以多种格式存在,比如栅格数据格式(如JPEG、PNG图片)和矢量数据格式(如shapefile、GeoJSON、KML等)。 shapefile文件是一种流行的矢量数据格式,由ESRI(美国环境系统研究所)开发。它主要用于地理信息系统(GIS)软件,用于存储地理空间数据及其属性信息。shapefile文件实际上是一个由多个文件组成的文件集,这些文件包括.shp、.shx、.dbf等文件扩展名,分别存储了图形数据、索引、属性数据等。这种格式广泛应用于地图制作、数据管理、空间分析以及地理研究。 描述提到,这个shapefile文件适合应用于解析shapefile程序的测试。这意味着该文件可以被用于测试或学习如何在程序中解析shapefile格式的数据。对于GIS开发人员或学习者来说,能够处理和解析shapefile文件是一项基本而重要的技能。它需要对文件格式有深入了解,以及如何在各种编程语言中读取和写入这些文件。 标签“世界地图 shapefile”为这个文件提供了两个关键词。世界地图指明了这个shapefile文件内容的地理范围,而shapefile指明了文件的数据格式。标签的作用通常是用于搜索引擎优化,帮助人们快速找到相关的内容或文件。 在压缩包子文件的文件名称列表中,我们看到“wold map”这个名称。这应该是“world map”的误拼。这提醒我们在处理文件时,确保文件名称的准确性和规范性,以避免造成混淆或搜索不便。 综合以上信息,知识点的详细介绍如下: 1. 世界地图的概念:世界地图是地理信息系统中一个用于表现全球或大范围区域地理信息的图形表现形式。它可以显示国界、城市、地形、水体等要素,并且可以包含多种比例尺。 2. shapefile文件格式:shapefile是一种矢量数据格式,非常适合用于存储和传输地理空间数据。它包含了多个相关联的文件,以.shp、.shx、.dbf等文件扩展名存储不同的数据内容。每种文件类型都扮演着关键角色: - .shp文件:存储图形数据,如点、线、多边形等地理要素的几何形状。 - .shx文件:存储图形数据的索引,便于程序快速定位数据。 - .dbf文件:存储属性数据,即与地理要素相关联的非图形数据,例如国名、人口等信息。 3. shapefile文件的应用:shapefile文件在GIS应用中非常普遍,可以用于地图制作、数据编辑、空间分析、地理数据的共享和交流等。由于其广泛的兼容性,shapefile格式被许多GIS软件所支持。 4. shapefile文件的处理:GIS开发人员通常需要在应用程序中处理shapefile数据。这包括读取shapefile数据、解析其内容,并将其用于地图渲染、空间查询、数据分析等。处理shapefile文件时,需要考虑文件格式的结构和编码方式,正确解析.shp、.shx和.dbf文件。 5. shapefile文件的测试:shapefile文件在开发GIS相关程序时,常被用作测试材料。开发者可以使用已知的shapefile文件,来验证程序对地理空间数据的解析和处理是否准确无误。测试过程可能包括读取测试、写入测试、空间分析测试等。 6. 文件命名的准确性:文件名称应该准确无误,以避免在文件存储、传输或检索过程中出现混淆。对于地理数据文件来说,正确的命名还对确保数据的准确性和可检索性至关重要。 以上知识点涵盖了世界地图shapefile文件的基础概念、技术细节、应用方式及处理和测试等重要方面,为理解和应用shapefile文件提供了全面的指导。
recommend-type

Python环境监控高可用构建:可靠性增强的策略

# 1. Python环境监控高可用构建概述 在构建Python环境监控系统时,确保系统的高可用性是至关重要的。监控系统不仅要在系统正常运行时提供实时的性能指标,而且在出现故障或性能瓶颈时,能够迅速响应并采取措施,避免业务中断。高可用监控系统的设计需要综合考虑监控范围、系统架构、工具选型等多个方面,以达到对资源消耗最小化、数据准确性和响应速度最优化的目
recommend-type

需要在matlab当中批量导入表格数据的指令

### 如何在 MATLAB 中批量导入表格数据 为了高效地处理多个表格文件,在 MATLAB 中可以利用脚本自动化这一过程。通过编写循环结构读取指定目录下的所有目标文件并将其内容存储在一个统一的数据结构中,能够显著提升效率。 对于 Excel 文件而言,`readtable` 函数支持直接从 .xls 或者 .xlsx 文件创建 table 类型变量[^2]。当面对大量相似格式的 Excel 表格时,可以通过遍历文件夹内的每一个文件来完成批量化操作: ```matlab % 定义要扫描的工作路径以及输出保存位置 inputPath = 'C:\path\to\your\excelFil
recommend-type

Sqlcipher 3.4.0版本发布,优化SQLite兼容性

从给定的文件信息中,我们可以提取到以下知识点: 【标题】: "sqlcipher-3.4.0" 知识点: 1. SQLCipher是一个开源的数据库加密扩展,它为SQLite数据库增加了透明的256位AES加密功能,使用SQLCipher加密的数据库可以在不需要改变原有SQL语句和应用程序逻辑的前提下,为存储在磁盘上的数据提供加密保护。 2. SQLCipher版本3.4.0表示这是一个特定的版本号。软件版本号通常由主版本号、次版本号和修订号组成,可能还包括额外的前缀或后缀来标识特定版本的状态(如alpha、beta或RC - Release Candidate)。在这个案例中,3.4.0仅仅是一个版本号,没有额外的信息标识版本状态。 3. 版本号通常随着软件的更新迭代而递增,不同的版本之间可能包含新的特性、改进、修复或性能提升,也可能是对已知漏洞的修复。了解具体的版本号有助于用户获取相应版本的特定功能或修复。 【描述】: "sqlcipher.h是sqlite3.h的修正,避免与系统预安装sqlite冲突" 知识点: 1. sqlcipher.h是SQLCipher项目中定义特定加密功能和配置的头文件。它基于SQLite的头文件sqlite3.h进行了定制,以便在SQLCipher中提供数据库加密功能。 2. 通过“修正”原生SQLite的头文件,SQLCipher允许用户在相同的编程环境或系统中同时使用SQLite和SQLCipher,而不会引起冲突。这是因为两者共享大量的代码基础,但SQLCipher扩展了SQLite的功能,加入了加密支持。 3. 系统预安装的SQLite可能与需要特定SQLCipher加密功能的应用程序存在库文件或API接口上的冲突。通过使用修正后的sqlcipher.h文件,开发者可以在不改动现有SQLite数据库架构的基础上,将应用程序升级或迁移到使用SQLCipher。 4. 在使用SQLCipher时,开发者需要明确区分它们的头文件和库文件,避免链接到错误的库版本,这可能会导致运行时错误或安全问题。 【标签】: "sqlcipher" 知识点: 1. 标签“sqlcipher”直接指明了这个文件与SQLCipher项目有关,说明了文件内容属于SQLCipher的范畴。 2. 一个标签可以用于过滤、分类或搜索相关的文件、代码库或资源。在这个上下文中,标签可能用于帮助快速定位或检索与SQLCipher相关的文件或库。 【压缩包子文件的文件名称列表】: sqlcipher-3.4.0 知识点: 1. 由于给出的文件名称列表只有一个条目 "sqlcipher-3.4.0",它很可能指的是压缩包文件名。这表明用户可能下载了一个压缩文件,解压后的内容应该与SQLCipher 3.4.0版本相关。 2. 压缩文件通常用于减少文件大小或方便文件传输,尤其是在网络带宽有限或需要打包多个文件时。SQLCipher的压缩包可能包含头文件、库文件、示例代码、文档、构建脚本等。 3. 当用户需要安装或更新SQLCipher到特定版本时,他们通常会下载对应的压缩包文件,并解压到指定目录,然后根据提供的安装指南或文档进行编译和安装。 4. 文件名中的版本号有助于确认下载的SQLCipher版本,确保下载的压缩包包含了期望的特性和功能。 通过上述详细解析,我们可以了解到关于SQLCipher项目版本3.4.0的相关知识,以及如何处理和使用与之相关的文件。
recommend-type

Python环境监控性能监控与调优:专家级技巧全集

# 1. Python环境性能监控概述 在当今这个数据驱动的时代,随着应用程序变得越来越复杂和高性能化,对系统性能的监控和优化变得至关重要。Python作为一种广泛应用的编程语言,其环境性能监控不仅能够帮助我们了解程序运行状态,还能及时发现潜在的性能瓶颈,预防系统故障。本章将概述Python环境性能监控的重要性,提供一个整体框架,以及为后续章节中深入探讨各个监控技术打