sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show()改成导出混淆矩阵图片文件

时间: 2024-02-18 15:06:12 浏览: 30
要将混淆矩阵保存为图片文件,您可以使用`matplotlib`库中的`savefig`函数。可以按照以下步骤进行操作: 1. 导入`matplotlib`库: ```python import matplotlib.pyplot as plt ``` 2. 绘制热力图并隐藏显示: ```python plt.imshow(confusion_mat, cmap="Blues") plt.colorbar() plt.title("Confusion Matrix") plt.xlabel("Predicted Labels") plt.ylabel("True Labels") plt.xticks(ticks=range(len(labels)), labels=labels, rotation=45) plt.yticks(ticks=range(len(labels)), labels=labels) plt.tight_layout() plt.savefig("confusion_matrix.png") ``` 3. 保存图片文件: ```python plt.savefig("confusion_matrix.png") ``` 以上代码将生成一个名为`confusion_matrix.png`的图片文件,保存在当前工作目录下。您可以将文件名更改为您喜欢的名称和路径。
相关问题

def show_matrix(y_test, y_pred): # 定义一个函数显示混淆矩阵 y_test=y_test.detach().numpy() y_pred=y_pred.detach().numpy() print(y_test) cm = confusion_matrix(y_test,y_pred) # 调用混淆矩阵 plt.title("ANN Confusion Matrix") # 标题 sns.heatmap(cm,annot=True,cmap="Blues",fmt="d",cbar=False) # 热力图设定 plt.show() # 显示混淆矩阵

这段代码定义了一个名为`show_matrix`的函数,用于显示混淆矩阵。下面是完整的代码: ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix def show_matrix(y_test, y_pred): y_test = y_test.detach().numpy() y_pred = y_pred.detach().numpy() print(y_test) cm = confusion_matrix(y_test, y_pred) plt.title("ANN Confusion Matrix") sns.heatmap(cm, annot=True, cmap="Blues", fmt="d", cbar=False) plt.show() ``` 该函数的输入参数`y_test`和`y_pred`是模型的真实标签和预测结果。首先,将它们转换为NumPy数组(假设它们是PyTorch张量)。然后,使用`confusion_matrix`函数计算混淆矩阵。接下来,使用Matplotlib和Seaborn绘制热力图来可视化混淆矩阵。最后,使用`plt.show()`显示混淆矩阵。 请确保已经导入所需的库(numpy、matplotlib、seaborn、sklearn.metrics)并将真实标签和预测结果传递给`show_matrix`函数以进行调用。

将后面代码绘制的图保存的代码from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # 预测结果和真实结果 y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2] y_pred = [0, 1, 1, 0, 2, 1, 0, 2, 2] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred) # 可视化混淆矩阵 sns.set() sns.heatmap(cm, annot=True, cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.show()

以下是将代码中绘制的图保存到本地的代码: ```python from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # 预测结果和真实结果 y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2] y_pred = [0, 1, 1, 0, 2, 1, 0, 2, 2] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred) # 可视化混淆矩阵 sns.set() sns.heatmap(cm, annot=True, cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.savefig('confusion_matrix.png') plt.show() ``` 这段代码会将绘制的混淆矩阵保存为当前工作路径下的 `confusion_matrix.png` 文件。您可以根据需要修改文件名和路径。

相关推荐

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report, roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)输出混淆矩阵图片以及各分类精度

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, confusion_matrix # 读取Excel文件 df = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 提取特征和标签 X = df[['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态']] y = df['交通风险'] # 划分训练集和验证集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建决策树模型 clf = DecisionTreeClassifier() # 使用训练集拟合模型 clf.fit(X_train, y_train) # 预测验证集的标签 y_pred = clf.predict(X_test) # 计算模型的准确率 accuracy = accuracy_score(y_test, y_pred) # 输出模型的准确率 print('Accuracy:', accuracy) # 输出混淆矩阵 cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(6,6)) sns.heatmap(cm, annot=True, cmap='Blues') plt.xlabel('Predicted label') plt.ylabel('True label') plt.title('Confusion Matrix') plt.savefig('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/决策树confusion_matrix.png') # 读取新的Excel数据 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') # 提取特征 X_new = new_data[['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态']] # 预测新数据的标签 y_new = clf.predict(X_new) # 将预测结果输出到新的Excel文件中 new_data['交通风险预测结果'] = y_new new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096-决策树结果.xlsx', index=False)修改代码输出混淆矩阵

最新推荐

recommend-type

操作系统实验二进程同步与互斥.docx

操作系统实验二进程同步与互斥
recommend-type

pyzmq-25.1.1-cp39-cp39-macosx_10_15_universal2.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

gnn-citationS

gnn-citationS
recommend-type

redis命令实践详细版

redis命令实践
recommend-type

grpcio-1.24.3-cp36-cp36m-macosx_10_9_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。