data=no.array([[1,2,3],[4,5,6],[7,8,9]])使用axis对给定的二维数组的行和列分别求和
时间: 2024-06-14 12:04:50 浏览: 141
使用axis参数可以对给定的二维数组的行和列分别求和。具体方法如下:
1. 对行求和:
```python
import numpy as np
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
row_sum = np.sum(data, axis=1)
print("行求和结果:", row_sum) # 输出:[ 6 15 24]
```
2. 对列求和:
```python
import numpy as np
data = np.array([[1, 2, 3 [4, 5, 6], [7, 8, 9column_sum = np.sum(data, axis=0)
print("列求和结果: column_sum) # 输出:[12 15 18]
```
相关问题
程序提示AttributeError: 'NoneType' object has no attribute 'shape',优化程序def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T # depth[depth==65535]=0 self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1) data_ply[1] = -self.Y.T.reshape(-1) data_ply[2] = -self.Z.T.reshape(-1) img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1) data_ply[4] = img[:, :, 1:2].reshape(-1) data_ply[5] = img[:, :, 2:3].reshape(-1) self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1)
这个错误通常是由于数组或矩阵为空,导致无法获取其形状信息。你可以在程序中增加一些判断语句,避免出现这种情况。比如,在计算前可以先检查输入的 depth、camera_intrinsics 和 rgb 是否为空,若为空则直接返回或抛出异常;或者在计算过程中可以增加一些条件判断,例如:
```python
if self.depth is None or self.camera_intrinsics is None or self.rgb is None:
# 输入数据为空,直接返回或抛出异常
return
if self.depth.size == 0:
# depth为空数组,直接返回或抛出异常
return
# ...
```
此外,你也可以打印出一些中间变量的形状信息,以便在出现问题时更容易定位错误。例如,你可以在计算 self.X 和 self.Y 时增加以下代码:
```python
print('Shape of X:', X.shape)
print('Shape of Y:', Y.shape)
```
这样可以方便地查看 X 和 Y 是否有正确的形状。如果仍然无法解决问题,建议提供更多代码和错误信息,以便更好地排查问题。
def evaluate_test(): import preprocess """ 在未训练的数据集上进行测试 :return: """ filters = Gabor().build_filters() from tqdm import tqdm from data import CK, Fer2013, Jaffe _, x, y = Fer2013().gen_train_no() train = [] for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) train.append(res) train = np.array(train) test = [] _, x, y = Jaffe().gen_train_no() for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) test.append(res) test = np.array(train) Classifier().SVM(train, test) test = [] _, x, y = CK().gen_train_no() for i in tqdm(np.arange(0, x.shape[0], 1)): x[i] = preprocess.gray_norm(x[i]) x[i] = preprocess.adaptive_histogram_equalization(x[i]) res = Gabor().getGabor(x[i], filters, False, 6) res = np.array(res).reshape(-1) res = np.append(res, y[i]) test.append(res) test = np.array(train) Classifier().SVM(train, test)
这段代码定义了一个函数evaluate_test,用于对未经训练的数据集进行测试。函数中使用了多个模块和类,包括preprocess、Gabor、tqdm、data和Classifier等。
首先,函数调用Gabor().build_filters()方法获取Gabor滤波器,然后使用Fer2013、Jaffe和CK数据集中的部分数据生成训练集和测试集,对每个样本进行预处理,包括灰度化和自适应直方图均衡化等操作。接着,使用Gabor().getGabor方法对每个样本进行Gabor滤波,得到一个包含多个特征的向量,并将该向量与该样本的标签合并为一个样本,添加到train或test中。最后,对训练集和测试集分别进行SVM分类器的训练和测试,输出测试结果。
该函数的作用是测试在未经过训练的数据集上,使用Gabor滤波器提取特征,并使用SVM分类器进行分类的效果如何。
阅读全文