mobilenetv3 exp size
时间: 2023-10-30 08:09:39 浏览: 126
MobileNetV3 的扩张因子(expansion factor)是指在每个深度可分离卷积层中,输入通道数与输出通道数之间的比例。MobileNetV3 中的扩张因子可以取 1 或大于 1 的整数,用于控制模型的宽度。例如,当扩张因子为 6 时,输出通道数是输入通道数的 6 倍。
MobileNetV3 的扩张因子可以应用在两个地方:第一个是在瓶颈块(bottleneck block)中,第二个是在最后的卷积层中。在瓶颈块中,扩张因子被应用于第二个 1x1 卷积层的输入和输出通道数之间的比例。在最后的卷积层中,扩张因子被应用于输入通道数和输出通道数之间的比例。
MobileNetV3 的扩张因子可以通过调整超参数来进行控制。在 TensorFlow 中,可以通过设置 `expansion_factor` 参数来指定扩张因子。默认情况下,`expansion_factor` 的值为 6。
相关问题
MobileNetV3 Bottleneck
### MobileNetV3 中的 Bottleneck 架构详解
MobileNetV3 的瓶颈模块(Bottleneck)继承并改进了 MobileNetV2 的设计理念,采用了更有效的深度可分离卷积来构建网络。这种设计不仅减少了计算量和参数数量,还提高了模型性能。
#### 主要特点
- **深度可分离卷积**:每个瓶颈单元由三个主要部分组成——逐点卷积(Pointwise Convolution)、深度卷积(Depthwise Convolution),以及另一个逐点卷积[^1]。
- **SE 模块集成**:为了增强表示能力,某些瓶颈层加入了 Squeeze-and-Excitation (SE) 块,用于自适应调整通道权重,从而更好地捕捉全局上下文信息[^3]。
- **H-Swish 激活函数**:相较于传统的 ReLU 函数,H-Swish 能够提供更好的非线性表达力,有助于提升模型表现。
#### 具体实现细节
在具体实现方面,每一个 bottleneck 单元通常遵循如下模式:
1. 使用 1×1 的逐点卷积增加或维持输入张量的通道数目;
2. 应用 3×3 或者其他尺寸的深度卷积操作处理空间维度;
3. 如果存在 SE 层,则在此阶段之后加入以优化特征映射;
4. 再次利用 1×1 的逐点卷积恢复原始通道数,并可能应用 H-Swish 非线性变换;
5. 最终通过残差连接将输出与输入相加形成 shortcut path[^4]。
```python
import torch.nn as nn
class BottleNeck(nn.Module):
def __init__(self, in_channels, exp_size, out_channels, kernel_size=3, stride=1, use_se=False, act='relu'):
super(BottleNeck, self).__init__()
layers = []
# Expansion phase
if exp_size != in_channels:
layers.append(ConvBNAct(in_channels, exp_size, kernel_size=1))
# Depthwise convolution
layers.extend([
ConvBNAct(exp_size, exp_size, kernel_size=kernel_size, stride=stride, groups=exp_size),
SEModule(exp_size) if use_se else nn.Identity(),
nn.Hardswish() if act == 'h-swish' else nn.ReLU()
])
# Projection phase
layers.append(ConvBNAct(exp_size, out_channels, kernel_size=1))
self.block = nn.Sequential(*layers)
self.use_residual = True if stride==1 and in_channels==out_channels else False
def forward(self, x):
result = self.block(x)
if self.use_residual:
result += x
return result
```
mobilenetv3模块代码
### MobilenetV3 模块源码实现
为了实现 MobileNetV3 模块并将其应用于 YOLOv8 模型中,以下是基于 PyTorch 的 MobileNetV3 源码实现:
#### 1. 定义基本组件
首先定义一些基础构建模块,这些模块构成了 MobileNetV3 的核心部分。
```python
import torch.nn as nn
import torch
class H_Swish(nn.Module):
def __init__(self, inplace=True):
super(H_Swish, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return x * self.relu(x + 3.) / 6.
class H_Sigmoid(nn.Module):
def __init__(self, inplace=True):
super(H_Sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3.) / 6.
```
#### 2. 构建 Bottleneck 层
Bottleneck 是 MobileNetV3 中的关键层之一,它实现了高效的特征提取。
```python
class SEBlock(nn.Module):
def __init__(self, channel, reduction=4):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
H_Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
exp_size, se=False, nl='RE'):
super(Bottleneck, self).__init__()
assert stride in [1, 2]
padding = (kernel_size - 1) // 2
if nl == "HS":
act = H_Swish
elif nl == "RE":
act = nn.ReLU
self.use_res_connect = stride == 1 and in_channels == out_channels
layers = []
if in_channels != exp_size:
layers.append(nn.Conv2d(in_channels, exp_size, 1, 1, 0, bias=False))
layers.append(nn.BatchNorm2d(exp_size))
layers.append(act(inplace=True))
layers.extend([
nn.Conv2d(exp_size, exp_size, kernel_size, stride, padding, groups=exp_size, bias=False),
nn.BatchNorm2d(exp_size),
act(inplace=True)])
if se:
layers.append(SEBlock(exp_size))
layers.extend([
nn.Conv2d(exp_size, out_channels, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_channels)])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
```
#### 3. 组合完整的 MobileNetV3 结构
最后组合上述各部分形成完整的 MobileNetV3 网络架构。
```python
cfgs_large = [
# k, t, c, SE, NL, s
[3, 16, 16, False, 'RE', 1],
[3, 64, 24, False, 'RE', 2],
[3, 72, 24, False, 'RE', 1],
[5, 72, 40, True, 'RE', 2],
[5, 120, 40, True, 'RE', 1],
[5, 120, 40, True, 'RE', 1],
[3, 240, 80, False, 'HS', 2],
[3, 200, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 480, 112, True, 'HS', 1],
[3, 672, 112, True, 'HS', 1],
[5, 672, 160, True, 'HS', 2],
[5, 960, 160, True, 'HS', 1],
]
class MobileNetV3_Large(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNetV3_Large, self).__init__()
hidden_dim = 16
layers = []
first_conv_output = 16
layers.append(nn.Sequential(
nn.Conv2d(3, first_conv_output, 3, 2, 1, bias=False),
nn.BatchNorm2d(first_conv_output),
H_Swish()))
input_channel = first_conv_output
for k, exp_size, c, use_se, nl, s in cfgs_large:
output_channel = c
layers.append(Bottleneck(input_channel, output_channel, k, s, exp_size, use_se, nl))
input_channel = output_channel
last_conv_input = input_channel
last_conv_output = 960
layers.append(nn.Sequential(
nn.Conv2d(last_conv_input, last_conv_output, 1, 1, 0, bias=False),
nn.BatchNorm2d(last_conv_output),
H_Swish()))
self.features = nn.Sequential(*layers)
self.classifier = nn.Sequential(
nn.Linear(last_conv_output, 1280),
H_Swish(),
nn.Dropout(0.2),
nn.Linear(1280, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.mean([2, 3]) # global average pooling
x = self.classifier(x)
return x
```
此代码展示了如何创建一个适用于图像分类任务的 MobileNetV3-Large 版本模型。对于特定应用如目标检测(YOLOv8),可能还需要进一步调整输入/输出维度以及某些内部参数设置以适应具体需求[^2]。
阅读全文
相关推荐










