完成在Paddle框架下的手写数字识别任务,修改网络结构,采用卷积神经网络,修改网络损失函数为交叉熵损失,观察模型在不同的优化算法和学习率下的损失函数输出,对模型的性能进行可视化分析。python程序
时间: 2024-11-09 11:21:07 浏览: 5
在Paddle(飞桨)框架下完成手写数字识别任务,首先需要做的是安装PaddlePaddle库并设置好开发环境。以下是基本步骤:
1. **导入所需库**:
```python
import paddle
from paddle.vision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
```
2. **数据预处理**:
使用`MNIST`数据集,对其进行标准化等操作:
```python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = datasets.MNIST(root='./data', train=True, transform=transform)
```
3. **构建卷积神经网络模型**:
```python
class ConvNet(paddle.nn.Layer):
def __init__(self):
super(ConvNet, self).__init__()
# 添加卷积层、池化层和全连接层
self.conv1 = paddle.nn.Conv2D(1, 8, kernel_size=3, stride=1, padding=1)
self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = paddle.nn.Linear(8 * 7 * 7, 128)
# 定义前向传播过程
def forward(self, x):
x = paddle.nn.functional.relu(self.conv1(x))
x = self.pool1(x)
x = paddle.reshape(x, shape=[-1, 8 * 7 * 7])
x = paddle.nn.functional.relu(self.fc1(x))
return x
model = ConvNet()
```
4. **设置优化器和损失函数**:
```python
loss_fn = paddle.nn.CrossEntropyLoss() # 使用交叉熵损失
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) # Adam优化器
```
5. **训练和评估**:
```python
for epoch in range(num_epochs):
for data in dataset:
images, labels = data[0], data[1]
logits = model(images)
loss = loss_fn(logits, labels)
optimizer.clear_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {loss.numpy()}")
# 可视化分析
train_losses = [loss.numpy() for loss in losses_list] # losses_list存储每次迭代的损失值
plt.plot(train_losses)
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.title('Training Loss over Time')
plt.show()
```
6. **模型性能评估**:
可通过验证集或测试集计算准确率:
```python
_, test_acc = model.eval(set=datasets.MNIST(root='./data', train=False, transform=transform), return_numpy=True)
print(f"Test accuracy: {test_acc}")
```
记得替换上述代码中的`num_epochs`, `learning_rate`, 和其他变量以适应实际需求。
阅读全文