写一段多头注意力机制的代码
时间: 2023-07-03 20:27:50 浏览: 88
好的,以下是一段使用 PyTorch 实现多头注意力机制的代码:
```python
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.head_size = d_model // num_heads
self.Wq = nn.Linear(d_model, d_model)
self.Wk = nn.Linear(d_model, d_model)
self.Wv = nn.Linear(d_model, d_model)
self.fc = nn.Linear(d_model, d_model)
def split_heads(self, x):
batch_size, seq_len, d_model = x.size()
x = x.view(batch_size, seq_len, self.num_heads, self.head_size)
return x.permute(0, 2, 1, 3)
def forward(self, q, k, v, mask=None):
q = self.Wq(q)
k = self.Wk(k)
v = self.Wv(v)
q = self.split_heads(q)
k = self.split_heads(k)
v = self.split_heads(v)
scores = torch.matmul(q, k.permute(0, 1, 3, 2))
scores = scores / (self.d_model ** 0.5)
if mask is not None:
mask = mask.unsqueeze(1).unsqueeze(2)
scores = scores.masked_fill(mask == 0, -1e9)
attn_weights = nn.Softmax(dim=-1)(scores)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.d_model)
attn_output = self.fc(attn_output)
return attn_output, attn_weights
```
这个类实现了一个多头注意力机制的网络层,输入参数包括 d_model (输入向量维度) 和 num_heads (头的数量)。在 forward 方法中,我们首先将输入的查询、键和值向量分别通过线性层进行转换,并将它们分割成头。接下来,我们计算头之间的注意力得分,并将其乘以值向量。最后,我们将头拼接在一起,并通过全连接层进行后续处理。注意力权重也被返回,以便稍后进行可视化和分析。
阅读全文