Transformer模型的自注意力机制的代码是什么
时间: 2024-05-05 19:15:49 浏览: 92
Transformer:Seq2Seq 模型 + 自注意力機制
自注意力机制的代码可以使用PyTorch实现如下:
```python
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_heads, dropout_prob):
super(SelfAttention, self).__init__()
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
self.query = nn.Linear(hidden_size, hidden_size)
self.key = nn.Linear(hidden_size, hidden_size)
self.value = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, input_tensor):
batch_size = input_tensor.size(0)
query = self.query(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2)
key = self.key(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2)
value = self.value(input_tensor).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2)
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.head_size)
attention_probs = nn.Softmax(dim=-1)(attention_scores)
context = torch.matmul(self.dropout(attention_probs), value)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.head_size)
return context
```
这段代码定义了一个SelfAttention模块,其中包含了query、key和value三个线性层,并且使用了多头注意力机制。在forward方法中,将输入张量通过query、key和value三个线性层,然后将结果进行reshape、transpose等操作,最后计算注意力分数,然后通过softmax函数归一化得到注意力分布,然后将分布与value相乘得到上下文向量。最后将多头的上下文向量拼接起来,得到最终的输出
阅读全文