import cv2 window_name = "Detected Objects in webcam" video = cv2.VideoCapture(0),这个VideoCapture函数为什么会是黄色
时间: 2024-04-27 09:21:59 浏览: 81
`cv2.VideoCapture()` 函数被黄色标记可能是因为该函数未被正确导入。请确保你已经正确安装了 OpenCV 库,并且在代码的开头使用了正确的导入语句 `import cv2`。如果你已经正确导入了 OpenCV 库并且仍然看到黄色标记,则可能是你的 IDE 或文本编辑器无法正确解析该函数的定义。在这种情况下,你可以通过确保你的代码能够正常运行来验证该函数是否有效,或者尝试在其他 IDE 或编辑器中查看该函数是否被正确解析。
相关问题
上述表述和我下载的官方代码不一样,以下是我截取的部分源代码,请重新整理if name == 'main': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
根据您提供的代码,我重新整理了Detect.py的代码,并添加了时间记录和报警规避功能的注释说明。以下是修改后的代码:
```python
import cv2
import time
import argparse
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords, xyxy2xywh
from utils.torch_utils import select_device
# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
args = parser.parse_args()
# 加载模型权重
device = select_device(args.device) # 使用指定设备
model = attempt_load(args.weights, map_location=device) # 加载模型
# 初始化时间记录和报警规避相关变量
last_alarm_time = time.time() # 上次报警时间
alarm_interval = 10 # 报警时间间隔(秒)
# 打开摄像头
cap = cv2.VideoCapture(args.source)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 图像预处理
img = letterbox(frame, new_shape=args.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img)
# 将图像转换为Tensor并进行推理
img = torch.from_numpy(img).to(device)
img = img.float() / 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# 推理并进行非极大值抑制
pred = model(img, augment=False)[0]
pred = non_max_suppression(pred, args.conf_thres, args.iou_thres)
# 处理检测结果
for det in pred[0]:
if det is not None:
# 获取检测框的坐标和置信度
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
for *xyxy, conf, cls in reversed(det):
x, y, w, h = map(int, xyxy2xywh(xyxy))
label = f'{names[int(cls)]} {conf:.2f}'
# 判断是否检测到不带安全帽的人
if label == 'no_hat':
# 检查是否达到报警时间间隔
current_time = time.time()
if current_time - last_alarm_time > alarm_interval:
# 记录报警时间并执行报警操作
last_alarm_time = current_time
print("Alarm: No helmet detected!")
# 添加报警操作的代码
# 在图像上绘制检测结果
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (255, 0, 0), 2)
# 显示检测结果
cv2.imshow('Detection', frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
请注意,上述代码仅修改了与您提供的代码不一致的部分,并添加了时间记录和报警规避功能的注释说明。您可能需要根据您的实际需求对其进行进一步的修改和优化。
请帮我编写一个完整的程序可以实现实时检测物体识别的功能的代码
非常感谢您对我提出的问题。以下是一个Python代码示例,该示例使用OpenCV和YOLOv4实现了实时物体检测功能:
```python
import cv2
# Load the YOLOv4 model
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# Set the classes (objects) we want to detect
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Define the input and output layers for the model
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Start capturing video from the webcam
cap = cv2.VideoCapture(0)
while True:
# Get the current frame from the video stream
ret, frame = cap.read()
# Convert the frame to a blob format for input into the model
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416,416), (0,0,0), True, crop=False)
# Pass the blob through the network and get the predictions
net.setInput(blob)
outs = net.forward(output_layers)
# Create empty lists for the detected objects' bounding boxes, class IDs, and confidences
boxes = []
confidences = []
class_ids = []
# Loop through all the detections and filter out the desired classes
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id in [0, 2, 3, 56]: # Modify this line to change the desired classes
center_x = int(detection[0] * frame.shape[1])
center_y = int(detection[1] * frame.shape[0])
w = int(detection[2] * frame.shape[1])
h = int(detection[3] * frame.shape[0])
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Draw the bounding boxes and class labels on the frame
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0, 255, size=(len(classes), 3))
if len(indexes) > 0:
for i in indexes.flatten():
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(frame, (x,y), (x+w,y+h), color, 2)
cv2.putText(frame, label, (x,y+30), font, 3, color, 3)
# Show the resulting frame with the detections
cv2.imshow("Object Detection", frame)
# Press Q to exit the program
if cv2.waitKey(1) == ord('q'):
break
# Release the video stream and close all windows
cap.release()
cv2.destroyAllWindows()
```
请注意,此代码只能识别预先定义的类别(在此示例中为人、车、卡车和自行车)。如果您想识别其他类别,请修改代码中的示例编号。此外,由于模型的复杂性和计算需求,在计算资源不足的情况下,可能需要降低分辨率或减少每秒帧数(使用set()方法)。这可能会导致模型准确度的降低。
阅读全文