np.loadtxt(os.path.join('FGU_RC3DF_files', 'ModalAnalysis_Node_EigenVectors_EigenVal.out'),skiprows=1)[2,1]
时间: 2024-04-02 13:35:45 浏览: 60
这是一个 Python 代码行,它从指定的文件中加载数据,并返回该文件中第三行第二列的值。具体来说,它使用 numpy 库中的 loadtxt 函数加载路径为 'FGU_RC3DF_files/ModalAnalysis_Node_EigenVectors_EigenVal.out' 的文件,跳过第一行(因为它通常包含文件标题),然后索引第三行第二列的元素。
相关问题
base_dir = 'C:\\Users\\dell\\Desktop\\U\\Unet3-Plus-main\\Unet3+' os.chmod(base_dir, 0o755) x_train = os.path.join(base_dir, "image") y_train = os.path.join(base_dir, 'label') if isinstance(x_train,str): x_train = np.loadtxt(x_train).astype(np.float64) y_train = np.loadtxt(y_train).astype(np.float64) else: x_train = x_train.astype(np.float64) y_train = y_train.astype(np.float64)修改代码能成功运行
这段代码可能会存在一些问题,需要根据具体情况进行修改。但根据我理解,可能需要进行以下修改:
1. 将路径中的 "\\" 改为 "/",因为在 Python 中 "\\" 是转义字符,可能会导致路径无法正确识别。
2. 使用 os 模块中的函数读取文件,而不是使用 np.loadtxt() 函数。可以使用 os.listdir() 函数获取文件列表,再使用 np.load() 函数加载每个文件。
3. 对于读取的数据,需要进行归一化等预处理操作,才能用于训练模型。可以使用 sklearn.preprocessing 模块中的函数进行处理。
根据以上修改,可以得到如下代码:
```
import os
import numpy as np
from sklearn.preprocessing import MinMaxScaler
base_dir = 'C:/Users/dell/Desktop/U/Unet3-Plus-main/Unet3+'
os.chmod(base_dir, 0o755)
x_train_dir = os.path.join(base_dir, "image")
y_train_dir = os.path.join(base_dir, 'label')
x_train_list = os.listdir(x_train_dir)
y_train_list = os.listdir(y_train_dir)
x_train = []
y_train = []
for x_file, y_file in zip(x_train_list, y_train_list):
x_path = os.path.join(x_train_dir, x_file)
y_path = os.path.join(y_train_dir, y_file)
x_data = np.load(x_path)
y_data = np.load(y_path)
x_train.append(x_data)
y_train.append(y_data)
x_train = np.array(x_train).astype(np.float64)
y_train = np.array(y_train).astype(np.float64)
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
y_train = scaler.fit_transform(y_train)
```
解释代码:def main(args): obj_names = np.loadtxt(args.obj_file, dtype=str) N_map = np.load(args.N_map_file) mask = cv2.imread(args.mask_file, 0) N = N_map[mask > 0] L = np.loadtxt(args.L_file) if args.stokes_file is None: stokes = np.tile(np.array([[1, 0, 0, 0]]), (len(L), 1)) else: stokes = np.loadtxt(args.stokes_file) v = np.array([0., 0., 1.], dtype=float) H = (L + v) / np.linalg.norm(L + v, axis=1, keepdims=True) theta_d = np.arccos(np.sum(L * H, axis=1)) norm = np.linalg.norm(L - H, axis=1, keepdims=True) norm[norm == 0] = 1 Q = (L - H) / norm for i_obj, obj_name in enumerate(obj_names[args.obj_range[0]:args.obj_range[1]]): print('===== {} - {} start ====='.format(i_obj, obj_name)) obj_name = str(obj_name) pbrdf = PBRDF(os.path.join(args.pbrdf_dir, obj_name + 'matlab', obj_name + 'pbrdf.mat')) ret = Parallel(n_jobs=args.n_jobs, verbose=5, prefer='threads')([delayed(render)(i, pbrdf, n, L, stokes, H, theta_d, Q) for i, n in enumerate(N)]) ret.sort(key=lambda x: x[0]) M = np.array([x[1] for x in ret], dtype=float) if args.save_type != 'raw': M = M / M.max() pimgs = np.zeros((len(L), 4) + N_map.shape) pimgs[:, :, mask > 0] = M.transpose(2, 1, 0, 3) out_path = os.path.join(args.out_dir, obj_name) makedirs(out_path) print('Saving images...') fnames = [] for i, imgs in enumerate(tqdm(pimgs)): if args.save_type == 'npy' or args.save_type == 'raw': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.npy'.format(i + 1, pangle) fnames.append(fname) np.save(os.path.join(out_path, fname), img) elif args.save_type == 'png': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.png'.format(i + 1, pangle) fnames.append(fname) img = img * np.iinfo(np.uint16).max img = img[..., ::-1] cv2.imwrite(os.path.join(out_path, fname), img.astype(np.uint16)) np.save(os.path.join(out_path, 'normal_gt.npy'), N_map) shutil.copyfile(args.mask_file, os.path.join(out_path, 'mask.png')) shutil.copyfile(args.L_file, os.path.join(out_path, 'light_directions.txt')) print('===== {} - {} done ====='.format(i_obj, obj_name))
这段代码是一个函数 `main`,它的输入参数是 `args`,其中包含了一些文件路径和其他参数。这个函数主要的任务是对给定的场景中的每个物体进行渲染,并保存渲染结果的图像。下面是这个函数的具体步骤:
1. 从文件中加载物体的名称列表 `obj_names`。
2. 从文件中加载法线图 `N_map`。
3. 从文件中加载掩膜图 `mask`。
4. 根据掩膜图选择出在场景中的光源方向向量 `L`。
5. 如果提供了 Stokes 向量文件,则从中加载 Stokes 向量 `stokes`;否则使用默认值。
6. 计算观测方向向量 `v` 和半角向量 `H`。
7. 计算太阳和观测方向之间的夹角 `theta_d`。
8. 计算半角向量和法线向量之间的差向量,并进行单位化。
9. 对于每个物体,进行以下操作:
1. 加载物体的反射率分布函数(PBRDF)。
2. 并行渲染该物体在每个法线上的图像。
3. 将渲染结果保存到文件中。
在保存渲染结果的时候,根据 `save_type` 参数的不同,可以选择将图像保存为 PNG 格式、原始二进制数据格式(npy),或者不进行格式转换直接保存。此外,函数还会将法线图、掩膜图、光源方向向量和保存的图像文件名列表等信息保存到输出目录下。
阅读全文