matlab多项式拟合函数 的拟合优度
时间: 2023-08-29 19:05:19 浏览: 401
在MATLAB中,你可以使用`polyfit`函数进行多项式拟合,然后通过`polyval`函数计算拟合优度。
首先,你需要准备一组数据点的x和y值。假设你有一个向量x和一个向量y,可以使用以下代码进行多项式拟合:
```matlab
% 假设有一组数据点 x 和 y
x = [1, 2, 3, 4, 5];
y = [1, 4, 9, 16, 25];
% 设置多项式的阶数
n = 2;
% 进行多项式拟合
p = polyfit(x, y, n);
% 计算拟合值
y_fit = polyval(p, x);
% 计算拟合优度
R_squared = 1 - sum((y - y_fit).^2) / sum((y - mean(y)).^2);
```
在上述代码中,`n`表示多项式的阶数,`p`是通过`polyfit`函数得到的拟合多项式的系数。然后,使用`polyval`函数计算拟合值`y_fit`。最后,通过计算拟合优度公式可以得到拟合优度的值`R_squared`。
需要注意的是,拟合优度取值范围为0到1之间,越接近1表示拟合效果越好。
希望以上信息对你有所帮助!如果还有其他问题,请随时提问。
阅读全文