MFC在那个界面添加定时器

时间: 2024-09-16 10:04:40 浏览: 29
MFC(Microsoft Foundation Classes),微软的基础类库,主要用于Windows应用程序的开发。要在MFC中添加定时器,通常是在对话框(Dialog)或窗口(Window)中完成。以下是步骤: 1. 打开包含定时器的CWnd派生类的头文件或源文件。 2. 在对话框类(如CDlg)或窗口类中,如果使用对话框资源,在资源视图(Resource View)中找到“Timer”选项卡,然后右键点击空白区域,选择“Add New Timer…”,并设置定时器的属性,如ID、间隔等。 3. 如果你想在运行时动态创建定时器,可以在OnInitDialog()或OnCreate()这类初始化函数中使用`SetTimer()`成员函数创建一个新的定时器,例如: ```cpp CWnd* pParent = GetParent(); // 获取父窗口句柄 if (pParent) { m_TimerId = pParent->SetTimer(0, /* 指定的时间间隔, 单位毫秒*/ ID_TIMER_MYTIMER, this); // 这里的this指代当前窗口类的实例 if (m_TimerId == -1) // 验证是否成功创建 AfxMessageBox("Failed to create timer."); } ``` 4. 定义处理定时器事件的槽函数,通常是OnTimer(),在这个函数里编写你的定时任务代码。
相关问题

高精度定时器实现mfc

### 回答1: 高精度定时器是指能够实现毫秒级别或更高精度的定时器。在MFC中实现高精度定时器可以通过以下步骤实现: 1.创建一个窗口,并通过SetTimer函数设置一个定时器。该函数有两个参数,一个是定时器ID号,一个是定时器的时间间隔。 2.在窗口类中添加一个成员变量,用于保存已经过去的时间。我们可以在WM_TIMER消息处理函数中,每次处理时递增该变量。 3.通过该变量计算出所需的时间,然后进行相应的操作。例如,我们可以将该变量转化为分钟和秒钟,然后在窗口上显示出来。 4.为了提高定时器的精度,可以通过Win32 API函数timeGetTime获取系统时间,然后在WM_TIMER消息处理函数中计算与上一次时间间隔,从而更加精确地计算已经过去的时间。 需要注意的是,高精度定时器会占用系统资源,并且可能存在时间误差。因此,在实现时需要考虑这些因素,并根据实际需求进行调整。 ### 回答2: 高精度定时器是一种能够实现较为精确的时间计量和延时控制的技术,而MFC(Microsoft Foundation Classes)则是基于Windows操作系统的C++类库,提供了GUI界面开发所需要的各种类、函数和控件等工具。将两者结合使用,可以实现用MFC编写的应用程序对时间的更加准确的控制或监测,如毫秒或微秒级别的时间计算和处理等。 要在MFC中实现高精度定时器功能,可以考虑使用Win32 API中提供的计时器函数来进行实现。具体实现步骤如下: 1. 定义计时器变量和时间变量。例如: UINT_PTR m_TimerID; // 计时器ID DWORD m_dwStartTime; // 记录开始时间 DWORD m_dwCurrentTime; // 记录当前时间 DWORD m_dwElapsedTime; // 记录已过时间 2. 创建计时器并开始计时。可以在窗口初始化函数中添加如下代码: m_TimerID = SetTimer(1, 1, NULL); // 1ms间隔 m_dwStartTime = GetTickCount(); // 记录开始时间 3. 处理计时器消息。在窗口消息响应函数中,添加对WM_TIMER消息的处理,如: case WM_TIMER: { m_dwCurrentTime = GetTickCount(); // 记录当前时间 m_dwElapsedTime = m_dwCurrentTime - m_dwStartTime; // 计算已过时间 // 这里可以根据需要进行时间数据的显示、处理等其他操作 } break; 4. 在窗口关闭时停止计时器。可以在窗口关闭函数中添加如下代码: KillTimer(m_TimerID); 以上就是使用高精度定时器实现MFC的简单示例。需要注意的是,由于不同计算机的性能和Windows操作系统的版本等因素可能会影响计时器的精度和稳定性,因此在实际应用中需要针对具体需求进行测试和调整。 ### 回答3: 高精度定时器可以通过MFC的计时器来实现。MFC的计时器是基于Windows API的定时器实现的。Windows API提供了一个SetTimer函数,用于设置定时器。MFC的CWnd类继承了Windows API的CWnd类,在此基础上提供了一系列的计时器函数。 使用MFC计时器,首先需要在类声明中添加一个计时器ID,具体实现可以如下: #define TIMER_ID 1 class CMyDlg : public CDialog { public: CMyDlg(CWnd* pParent = NULL); // 对话框数据 #ifdef AFX_DESIGN_TIME enum { IDD = IDD_MYDLG_DIALOG }; #endif protected: virtual void DoDataExchange(CDataExchange* pDX); protected: HICON m_hIcon; int m_nCount; afx_msg void OnTimer(UINT_PTR nIDEvent); afx_msg void OnBnClickedButtonStart(); afx_msg void OnBnClickedButtonStop(); DECLARE_MESSAGE_MAP() }; 在类声明中添加了一个计时器ID为1。同时,在消息映射中,添加了一个响应定时器事件的函数OnTimer。 void CMyDlg::OnTimer(UINT_PTR nIDEvent) { if (nIDEvent == TIMER_ID) { m_nCount++; //每次增加计数 } CDialog::OnTimer(nIDEvent); } OnTimer函数响应计时器事件,其中nIDEvent就是计时器ID。在函数中,我们可以编写计时器事件响应的代码,这里是每次增加计数。 在对话框初始化时就设置计时器: BOOL CMyDlg::OnInitDialog() { CDialog::OnInitDialog(); // 将“关于...”菜单项添加到系统菜单中。 // IDM_ABOUTBOX 必须在系统命令范围内。 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX < 0xF000); CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { BOOL bNameValid; CString strAboutMenu; bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX); ASSERT(bNameValid); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } } // 设置此对话框的图标。当应用程序主窗口不是对话框时,框架将自动 // 执行此操作 SetIcon(m_hIcon, TRUE); // 设置大图标 SetIcon(m_hIcon, FALSE); // 设置小图标 // TODO: 在此添加额外的初始化代码 SetTimer(TIMER_ID, 500, NULL); return TRUE; // 除非将焦点设置到控件,否则返回 TRUE } 在OnInitDialog函数中添加代码SetTimer(TIMER_ID, 500, NULL);就可以设置一个500ms的计时器了。 当然,在对话框关闭时,还要记得取消计时器: void CMyDlg::OnBnClickedButtonStop() { // TODO: 在此添加控件通知处理程序代码 KillTimer(TIMER_ID); } 这样,一个MFC的高精度定时器就实现了。其实,在MFC中,还可以使用CWnd::SetTimer来设置定时器,不过与SetTimer函数类似,使用时也需要取消,不然会造成内存泄漏。同时,MFC还提供了更为灵活的计时器功能,可以用来处理其他复杂的问题。

mfc中,如何通过点击按钮控件重置定时器时间

在MFC(Microsoft Foundation Classes)中,可以通过编程方式控制按钮控件与定时器事件的交互。要通过点击按钮来重置定时器时间,可以按照以下步骤操作: 1. 在对话框类中,添加一个定时器。通常这可以在`OnInitDialog`函数中完成,使用`SetTimer`函数来设置定时器。 ```cpp BOOL CYourDialog::OnInitDialog() { CDialogEx::OnInitDialog(); // 设置定时器,第一个参数为定时器标识,第二个参数为定时时间间隔(毫秒) SetTimer(1, 1000, NULL); // 例如这里设置了一个1秒的定时器 return TRUE; // return TRUE unless you set the focus to a control } ``` 2. 添加处理定时器超时的函数,使用`OnTimer`事件处理函数。在这个函数中,你可以更新界面显示或执行其他操作,并决定是否重启定时器。 ```cpp void CYourDialog::OnTimer(UINT_PTR nIDEvent) { if (nIDEvent == 1) // 确认定时器标识 { // 这里编写当定时器超时时你想要执行的操作 // ... // 如果需要重启定时器,可以调用SetTimer,如果不重启则不调用SetTimer // SetTimer(1, 1000, NULL); // 重新设置定时器为1秒 } CDialogEx::OnTimer(nIDEvent); } ``` 3. 为按钮添加消息映射。在对话框的类定义文件中,使用`ON_BN_CLICKED`宏将按钮的点击事件映射到一个消息处理函数上。 ```cpp BEGIN_MESSAGE_MAP(CYourDialog, CDialogEx) ON_BN_CLICKED(IDC_MY_BUTTON, &CYourDialog::OnBnClickedMyButton) ON_WM_TIMER() END_MESSAGE_MAP() void CYourDialog::OnBnClickedMyButton() { // 获取当前系统时间 SYSTEMTIME st; GetSystemTime(&st); // 将系统时间设置为定时器的超时时间 SetTimer(1, 1000 - (st.wMilliseconds % 1000), NULL); } ``` 在上述代码中,`IDC_MY_BUTTON`是按钮控件的标识符,你需要替换成实际使用的标识符。通过获取系统时间并计算毫秒数,可以将定时器设置为接近下一次整秒的超时时间。

相关推荐

VC mfc单文档中代码如下void CMyView::OnDraw(CDC* pDC) { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); for (int i=0;iSelectObject(&br); pDC->Ellipse(points[i].x-r,points[i].y-r,points[i].x+r,points[i].y+r); br.DeleteObject(); } // TODO: add draw code for native data here } ///////////////////////////////////////////////////////////////////////////// // CMyView printing BOOL CMyView::OnPreparePrinting(CPrintInfo* pInfo) { // default preparation return DoPreparePrinting(pInfo); } void CMyView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) { // TODO: add extra initialization before printing } void CMyView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) { // TODO: add cleanup after printing } ///////////////////////////////////////////////////////////////////////////// // CMyView diagnostics #ifdef _DEBUG void CMyView::AssertValid() const { CView::AssertValid(); } void CMyView::Dump(CDumpContext& dc) const { CView::Dump(dc); } CMyDoc* CMyView::GetDocument() // non-debug version is inline { ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc))); return (CMyDoc*)m_pDocument; } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // CMyView message handlers void CMyView::OnLButtonDown(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default center=point; r=rand()%46+5;//r=5~50 color=RGB(rand()%256,rand()%256,rand()%256); points.push_back(center); SetTimer(1,200,NULL); CView::OnLButtonDown(nFlags, point); } void CMyView::OnLButtonUp(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default CView::OnLButtonUp(nFlags, point); } void CMyView::rise() { for(int i=0;i<points.size();i++) { points[i].y-=5; if(points[i].y<-r) { points.erase(points.begin()+i); i--; } } } void CMyView::OnTimer(UINT nIDEvent) { // TODO: Add your message handler code here and/or call default if(nIDEvent==1){ RedrawWindow(); rise(); } CView::OnTimer(nIDEvent); },为什么运行结果中后面单击出现的圆的状态会改变前面出现的圆的状态,怎么修改此代码能实现每次单击出现的圆的大小和颜色都不相同,完整步骤及代码

zip
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REaDME.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。

最新推荐

recommend-type

MFC中添加ontimer的方法

在MFC(Microsoft Foundation Classes)框架中,`OnTimer`函数是用于处理定时器事件的关键方法。当你希望在应用程序中实现周期性的任务,比如每隔一段时间更新界面或执行某项操作,`OnTimer`就会派上用场。由于你刚...
recommend-type

VS2010 MFC编程入门教程

这部分内容让开发者了解如何在对话框或主窗口中添加和控制这些控件,实现用户界面的丰富功能。 第五部分涉及菜单、工具栏和状态栏的创建和使用。菜单是用户与应用程序交互的重要方式,而工具栏则提供了快捷访问常用...
recommend-type

VS2010之MFC入门到精通教程[鸡啄米]-书签版.pdf

本教程旨在指导读者学习MFC界面编程,提供了从基础知识到高级应用的详细指南。通过本教程,读者可以学习VS2010/MFC开发环境的设置、MFC应用程序框架的构建、对话框的创建和使用、常用控件的应用、菜单、工具栏与状态...
recommend-type

使用MFC编程实例基础入门

4. 动画:通过定时器和重绘机制,可以在MFC中实现各种动态效果。 5. 图元文件与打印:GDI支持图元文件的创建和操作,同时提供打印预览和实际打印的功能。 【文档与视图】 文档与视图是MFC应用程序框架的核心,文档...
recommend-type

VS2010之MFC入门到精通

7. **MFC常用类**:这部分介绍了MFC中一些常用的基础类,如字符串类CString、时间类CTime和CTimeSpan、定时器类和文件操作类CFile,以及MFC的异常处理机制,这些都是开发中不可或缺的工具。 8. **字体和文本输出**...
recommend-type

深入理解23种设计模式

"二十三种设计模式.pdf" 在软件工程中,设计模式是解决常见问题的可重用解决方案,它们代表了在特定上下文中被广泛接受的、经过良好验证的最佳实践。以下是二十三种设计模式的简要概述,涵盖了创建型、结构型和行为型三大类别: A. 创建型模式: 1. 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。避免多线程环境下的并发问题,通常通过双重检查锁定或静态内部类实现。 2. 工厂方法模式(Factory Method)和抽象工厂模式(Abstract Factory):为创建对象提供一个接口,但允许子类决定实例化哪一个类。提供了封装变化的平台,增加新的产品族时无须修改已有系统。 3. 建造者模式(Builder):将复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。适用于当需要构建的对象有多个可变部分时。 4. 原型模式(Prototype):通过复制现有的对象来创建新对象,减少了创建新对象的成本,适用于创建相似但不完全相同的新对象。 B. 结构型模式: 5. 适配器模式(Adapter):使两个接口不兼容的类能够协同工作。通常分为类适配器和对象适配器两种形式。 6. 代理模式(Proxy):为其他对象提供一种代理以控制对这个对象的访问。常用于远程代理、虚拟代理和智能引用等场景。 7. 外观模式(Facade):为子系统提供一个统一的接口,简化客户端与其交互。降低了系统的复杂度,提高了系统的可维护性。 8. 组合模式(Composite):将对象组合成树形结构以表示“部分-整体”的层次结构。它使得客户代码可以一致地处理单个对象和组合对象。 9. 装饰器模式(Decorator):动态地给对象添加一些额外的职责,提供了比继承更灵活的扩展对象功能的方式。 10. 桥接模式(Bridge):将抽象部分与实现部分分离,使它们可以独立变化。实现了抽象和实现之间的解耦,使得二者可以独立演化。 C. 行为型模式: 11. 命令模式(Command):将请求封装为一个对象,使得可以用不同的请求参数化其他对象,支持撤销操作,易于实现事件驱动。 12. 观察者模式(Observer):定义对象间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。 13. 迭代器模式(Iterator):提供一种方法顺序访问聚合对象的元素,而不暴露其底层表示。Java集合框架中的迭代器就是典型的实现。 14. 模板方法模式(Template Method):定义一个操作中的算法骨架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 15. 访问者模式(Visitor):表示一个作用于某对象结构中的各元素的操作。它可以在不改变各元素的类的前提下定义作用于这些元素的新操作。 16. 责任链模式(Chain of Responsibility):避免将处理逻辑硬编码在一个对象中,将一系列的对象链接起来,形成一条链,沿着链传递请求,直到某个对象处理该请求。 17. 状态模式(State):允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎改变了它的类。 18. 策略模式(Strategy):定义了一系列的算法,并将每一个算法封装起来,使它们可以相互替换。策略对象改变算法的变化,可以影响使用算法的类。 19. 备忘录模式(Memento):在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便以后恢复对象的状态。 20. 解释器模式(Interpreter):提供一个语言的文法表示,并定义了一个解释器,用于解释语言中的句子。 设计模式是软件开发中的一种经验总结,它们可以帮助我们编写更加灵活、可扩展和可维护的代码。理解和掌握这些设计模式,对于提高软件设计能力、优化代码结构、减少重复工作具有重要意义。在实际开发中,根据具体场景选择合适的设计模式,可以使代码更具可读性和可复用性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【编程实战】:打造健壮的string to int转换函数

![string to int](https://d8it4huxumps7.cloudfront.net/uploads/images/64f6cb6175ee2_type_casting_type_conversion_in_c_6.jpg) # 1. 转换函数的重要性与应用场景 在软件开发中,数据类型的转换是一个不可或缺的过程。特别是在处理用户输入、数据交换和数据存储时,字符串到整数(string to int)的转换函数是应用最广泛的转换操作之一。这一转换过程不仅对数据准确性至关重要,而且在确保系统性能和处理异常输入方面扮演着关键角色。 转换函数不仅仅是一个简单的数据类型转换,它还
recommend-type

Win11离线安装net framework 3.5方法

在Windows 11上安装.NET Framework 3.5的离线方法并不直接支持,因为Microsoft从Windows 8.1开始就停止了对.NET 3.5的正式支持,并且从Windows 10 Fall Creators Update之后不再提供.net framework的离线安装包。然而,如果你确实需要这个版本,你可以尝试以下步骤,但这可能会有一些风险: 1. **下载安装文件**:虽然官方渠道不再提供,你可以在一些技术论坛或第三方网站找到旧版的.NET Framework ISO镜像或者安装文件,但请注意这可能不是微软官方发布的,可能存在兼容性和安全性问题。 2. **创建
recommend-type

制作与调试:声控开关电路详解

"该资源是一份关于声控开关制作的教学资料,旨在教授读者如何制作和调试声控开关,同时涵盖了半导体三极管的基础知识,包括其工作原理、类型、测量方法和在电路中的应用。" 声控开关是一种利用声音信号来控制电路通断的装置,常用于节能照明系统。在制作声控开关的过程中,核心元件是三极管,因为三极管在电路中起到放大和开关的作用。 首先,我们需要理解三极管的基本概念。三极管是电子电路中的关键器件,分为两种主要类型:NPN型和PNP型。它们由两个PN结构成,分别是基极(b)、集电极(c)和发射极(e)。电流从发射极流向集电极,而基极控制这个电流。NPN型三极管中,电流从基极到发射极是正向的,反之对于PNP型。 在选择和测试三极管时,要关注其参数,如电流放大系数β,它决定了三极管放大电流的能力。例如,90××系列的三极管,如9013、9012、9014和9018,分别对应不同特性的NPN型和PNP型三极管。此外,还有不同封装形式,如塑料封装或金属封装,以及不同功能的标识,如开关管、低频小功率管等。 在声光控开关电路中,声控部分通常涉及麦克风或其他声音传感器,当接收到特定音量或频率的声音时,会触发信号。这个信号通过三极管进行放大,进而控制可控硅或场效应管,使电路闭合,从而开启负载(如照明设备)。照明时间控制在1分钟内,这可能涉及到延时电路的设计,如使用定时器芯片。 在实际操作中,需要用到的工具包括示波器来测量三极管的特性曲线,确保其工作在正确的区域。电路安装和调试则要求对电路原理有深入的理解,包括放大电路的分析和元件的正确连接。 制作声控开关不仅是学习电子技术的一种实践方式,也是理解半导体器件工作原理的良好途径。通过这样的项目,不仅可以提升动手能力,还能增强对基础电子学理论的理解。