rrt_connect算法怎么理解
时间: 2024-01-31 20:04:47 浏览: 215
RRT-Connect算法是一种基于Rapidly-exploring Random Tree (RRT)的路径规划算法。它是用来解决在高维、复杂环境中的机器人运动规划问题的。
算法步骤如下:
1. 初始化RRT的起点和终点,并将起点和终点分别作为两棵树的根节点。
2. 在自由空间内随机采样一个点,将该点插入到起点树或终点树中,使得两棵树之间的距离尽可能小。
3. 通过线性插值或其他插值方法,生成一条连接两个树的路径,并检查该路径是否与障碍物相交。如果路径不相交,则将其加入RRT中,并更新树的节点和边。
4. 如果路径相交,则继续随机采样新节点,并尝试连接两棵树,直到找到一条不相交的路径或者达到最大迭代次数。
5. 返回最优路径(即连接两棵树的路径中长度最小的那条路径)。
RRT-Connect算法的优点是可以快速地在高维空间中找到一条可行路径,并且可以在不同的环境中使用。缺点是可能会出现局部最优解,因此需要进行多次随机采样和路径连接。
相关问题
路径规划的rrt算法和rrt*算法和rrt_connect算法
### RRT、RRT* 和 RRT_Connect 算法的差异
#### RRT (Rapidly-exploring Random Tree)
RRT是一种基础性的路径规划算法,主要特点是能够在高维空间中高效探索未知区域。该算法通过在配置空间内随机选取样本点并逐步构建一棵由初始位置出发的成长树来实现这一点。每当新增加一个节点时,会检查是否存在通往目标的位置的可能性,并且遵循一定的步长限制以确保每一步都是合理的[^4]。
```python
def rrt_algorithm(start, goal, obstacles):
tree = {start}
while True:
random_point = sample_random_point()
nearest_node = find_nearest(tree, random_point)
new_node = extend_towards(nearest_node, random_point)
if not collide(new_node, obstacles):
add_to_tree(tree, new_node)
if close_enough(new_node, goal):
break
return reconstruct_path(tree, start, goal)
```
#### RRT*
RRT*作为RRT的一个改进版本,在保持原有特性的同时引入了优化机制。这意味着当新节点被加入到生长中的树里时,不仅考虑如何最接近随机选定点,还会评估现有路径的成本以便调整已有的分支使之更优。这种策略使得最终得到的结果不仅是可行解而且尽可能趋向于全局最优解[^3]。
```python
def rrt_star_algorithm(start, goal, obstacles):
tree = {start: None} # key is node, value is parent
for _ in range(max_iterations):
random_point = sample_random_point()
nearest_node = find_nearest(tree.keys(), random_point)
new_node = steer(nearest_node, random_point)
if not collide_segment(new_node, nearest_node, obstacles):
near_nodes = get_nearby_points(tree.keys(), new_node)
best_parent = choose_best_parent(near_nodes, new_node, obstacles)
connect_and_update_costs(best_parent, new_node, tree)
rewire_neighbors(near_nodes, new_node, tree)
if close_enough(new_node, goal):
final_path = backtrack_from_goal(tree, goal)
return final_path or []
```
#### RRT-Connect
不同于前两者单向增长的方式,RRT-Connect采用了双向搜索的方法——即同时从起点和终点各自建立一颗快速扩张随机树并向对方靠拢直到两棵树成功交汇形成完整的路径解决方案。这种方法显著提高了收敛速度特别是在面对遥远的目标或是狭窄通道等问题场景下表现尤为突出[^1]。
```python
def rrt_connect_algorithm(start, goal, obstacles):
forward_tree = {start: None}
backward_tree = {goal: None}
success = False
while not success and len(forward_tree) < max_attempts:
q_rand = sample_free_space(obstacles)
q_new_forward = grow_rrt(q_rand, forward_tree, obstacles)
if q_new_forward is not None:
forward_tree[q_new_forward] = closest_in_tree(forward_tree, q_rand)
q_new_backward = grow_rrt(q_new_forward, backward_tree, obstacles) if q_new_forward else None
if q_new_backward is not None:
backward_tree[q_new_backward] = closest_in_tree(backward_tree, q_new_forward)
if can_connect(q_new_forward, q_new_backward, obstacles):
path = combine_paths(forward_tree, backward_tree, q_new_forward, q_new_backward)
success = True
return path if success else None
```
rrt_connect算法c++实现
以下是RRT-Connect算法的C++实现示例。
```cpp
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <chrono>
using namespace std;
// 定义状态结构体
struct State {
double x;
double y;
};
// 定义节点结构体
struct Node {
State state;
Node* parent;
};
// 定义RRT-Connect类
class RRTConnect {
public:
RRTConnect(State start, State goal, double map_width, double map_height, double step_size);
void planning();
vector<State> getPath();
private:
Node* getRandomNode();
Node* getNearestNode(Node* node);
bool isCollide(State state);
bool isReach(State s1, State s2);
void addVertex(Node* parent, Node* child);
State generateRandomState();
vector<Node*> tree1;
vector<Node*> tree2;
State start_;
State goal_;
double map_width_;
double map_height_;
double step_size_;
double goal_radius_ = 0.5;
int max_iterations_ = 5000;
};
// RRT-Connect算法类构造函数
RRTConnect::RRTConnect(State start, State goal, double map_width, double map_height, double step_size)
: start_(start), goal_(goal), map_width_(map_width), map_height_(map_height), step_size_(step_size) {
Node* start_node = new Node{ start_, nullptr };
Node* goal_node = new Node{ goal_, nullptr };
tree1.push_back(start_node);
tree2.push_back(goal_node);
srand(time(nullptr)); // 初始化随机数种子
}
// 获取随机节点
Node* RRTConnect::getRandomNode() {
double x = (double)rand() / RAND_MAX * map_width_;
double y = (double)rand() / RAND_MAX * map_height_;
return new Node{ State{x, y}, nullptr };
}
// 获取最近节点
Node* RRTConnect::getNearestNode(Node* node) {
Node* nearest_node = tree1.front();
double min_dist = hypot(nearest_node->state.x - node->state.x, nearest_node->state.y - node->state.y);
for (auto n : tree1) {
double dist = hypot(n->state.x - node->state.x, n->state.y - node->state.y);
if (dist < min_dist) {
nearest_node = n;
min_dist = dist;
}
}
return nearest_node;
}
// 判断状态是否碰撞
bool RRTConnect::isCollide(State state) {
double obs_x = map_width_ / 2;
double obs_y = map_height_ / 2;
double obs_r = 2.0;
double dist = hypot(state.x - obs_x, state.y - obs_y);
return dist < obs_r;
}
// 判断两个状态是否可达
bool RRTConnect::isReach(State s1, State s2) {
double dist = hypot(s1.x - s2.x, s1.y - s2.y);
return dist < step_size_;
}
// 添加节点
void RRTConnect::addVertex(Node* parent, Node* child) {
child->parent = parent;
tree1.push_back(child);
}
// 生成随机状态
State RRTConnect::generateRandomState() {
double x = (double)rand() / RAND_MAX * map_width_;
double y = (double)rand() / RAND_MAX * map_height_;
return State{ x, y };
}
// RRT-Connect算法主函数
void RRTConnect::planning() {
for (int i = 0; i < max_iterations_; i++) {
Node* q_rand = getRandomNode();
Node* q_near = getNearestNode(q_rand);
State new_state;
if (isReach(q_near->state, q_rand->state)) {
new_state = q_rand->state;
} else {
double theta = atan2(q_rand->state.y - q_near->state.y, q_rand->state.x - q_near->state.x);
new_state = State{ q_near->state.x + step_size_ * cos(theta), q_near->state.y + step_size_ * sin(theta) };
}
if (isCollide(new_state)) {
continue;
}
Node* new_node = new Node{ new_state, nullptr };
addVertex(q_near, new_node);
if (isReach(new_state, goal_)) {
addVertex(tree2.front(), new Node{ goal_, nullptr });
break;
}
swap(tree1, tree2);
}
}
// 获取路径
vector<State> RRTConnect::getPath() {
vector<State> path;
Node* node = tree1.back();
while (node) {
path.push_back(node->state);
node = node->parent;
}
reverse(path.begin(), path.end());
node = tree2.front()->parent;
while (node) {
path.push_back(node->state);
node = node->parent;
}
return path;
}
int main() {
State start{ 1.0, 1.0 };
State goal{ 9.0, 9.0 };
RRTConnect rrt(start, goal, 10.0, 10.0, 0.5);
auto start_time = chrono::high_resolution_clock::now();
rrt.planning();
auto end_time = chrono::high_resolution_clock::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(end_time - start_time);
cout << "Time: " << duration.count() << "ms" << endl;
vector<State> path = rrt.getPath();
for (auto state : path) {
cout << "(" << state.x << ", " << state.y << ")" << endl;
}
return 0;
}
```
这个示例中,我们使用了两个树来进行RRT-Connect算法的搜索。其中,tree1是从起点出发的树,tree2是从终点出发的树。在每次迭代中,我们随机生成一个节点q_rand,并在tree1中寻找距离q_rand最近的节点q_near。然后,我们通过扩展q_near,生成新的节点new_node,并将其添加到tree1中。如果new_node离终点goal足够近,我们将生成一个新的终点节点,并结束搜索。在添加完new_node后,我们交换tree1和tree2,以便下一次迭代时,tree1成为从终点开始的树,tree2成为从起点开始的树。
值得注意的是,这个示例中我们假设地图中只有一个障碍物,障碍物的位置和大小都是固定的。在实际应用中,我们需要根据实际场景来确定障碍物的位置和大小。
阅读全文