rrt-connect算法的优点
时间: 2024-08-13 08:05:57 浏览: 70
RRT-Connect(Rapidly-exploring Random Tree Connect)算法是一种常用的随机树搜索方法,主要用于解决高维空间中的路径规划问题,特别是在动态环境中。它的优点包括:
1. **高效性**:RRT-Connect能够快速地构建搜索树,尤其是在稠密障碍物区域,通过连续添加新的节点和边,可以找到一条接近最优的解决方案。
2. **适应性**:算法能够处理复杂的环境,即使初始树与目标位置有很大距离,也能逐渐扩展并找到连接两者之间的路径。
3. **鲁棒性**:RRT-Connect对于起始和目标点的位置不敏感,对局部最优解有很好的抵抗能力。
4. **增量性质**:允许在线修改,当环境变化时,可以简单地在已有的树上添加新的节点而无需重新开始搜索。
5. **易于实现**:由于其随机性和局部搜索的特点,RRT-Connect算法的实现相对简单,适用于资源有限的实时应用。
相关问题
RRT-connect算法
RRT-connect算法是一种用于路径规划的算法,它基于快速随机树(Rapidly-exploring Random Trees, RRT)算法的思想。RRT-connect算法通过构建两棵RRT树来搜索起点到终点的可行路径。
首先,算法会在起点和终点分别构建一棵RRT树。每次迭代,算法会随机生成一个节点,并将该节点连接到最近的树节点。然后,检查连接的路径是否与障碍物相交。如果路径是可行的,则将新节点添加到树中。这个过程会一直重复,直到两棵树连接起来,即从起点到终点存在一条路径。
RRT-connect算法的优点是可以在高维空间中搜索路径,并且在大多数情况下能够找到最优解。它适用于不需要全局最优解的问题,并且对于具有多个自由度的系统,例如机器人运动规划和无人机路径规划等领域,有着广泛的应用。
RRT-Connect算法c++实现
以下是RRT-Connect算法的C++实现示例:
```cpp
#include <iostream>
#include <cmath>
#include <vector>
#include <random>
#include <chrono>
using namespace std;
struct Point {
double x;
double y;
};
class RRT_Connect {
public:
RRT_Connect(Point start, Point goal, double step_size, double goal_tolerance, double obstacle_tolerance) {
start_ = start;
goal_ = goal;
step_size_ = step_size;
goal_tolerance_ = goal_tolerance;
obstacle_tolerance_ = obstacle_tolerance;
srand(time(nullptr));
}
vector<Point> plan() {
vector<Point> path;
tree1_.push_back(start_);
tree2_.push_back(goal_);
int iter = 0;
while (iter++ < max_iteration_) {
Point random_point = getRandomPoint();
int nearest1 = getNearest(tree1_, random_point);
int nearest2 = getNearest(tree2_, random_point);
Point new_point1 = steer(tree1_[nearest1], random_point);
Point new_point2 = steer(tree2_[nearest2], random_point);
if (isCollisionFree(tree1_[nearest1], new_point1)) {
tree1_.push_back(new_point1);
if (connect(new_point1, tree2_, nearest2)) {
getPath(tree1_.size() - 1, tree2_.size() - 1, path);
return path;
}
}
if (isCollisionFree(tree2_[nearest2], new_point2)) {
tree2_.push_back(new_point2);
if (connect(new_point2, tree1_, nearest1)) {
getPath(tree1_.size() - 1, tree2_.size() - 1, path);
return path;
}
}
}
return path;
}
private:
Point start_;
Point goal_;
double step_size_;
double goal_tolerance_;
double obstacle_tolerance_;
vector<Point> tree1_;
vector<Point> tree2_;
int max_iteration_ = 10000;
double distance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
Point getRandomPoint() {
static default_random_engine generator(chrono::system_clock::now().time_since_epoch().count());
static uniform_real_distribution<double> distribution(0.0, 1.0);
double x = distribution(generator);
double y = distribution(generator);
Point p = { x, y };
return p;
}
int getNearest(vector<Point>& tree, Point p) {
int nearest = 0;
double min_distance = distance(tree[0], p);
for (int i = 1; i < tree.size(); i++) {
double d = distance(tree[i], p);
if (d < min_distance) {
nearest = i;
min_distance = d;
}
}
return nearest;
}
Point steer(Point from, Point to) {
double d = distance(from, to);
if (d <= step_size_) {
return to;
}
double ratio = step_size_ / d;
double x = from.x + (to.x - from.x) * ratio;
double y = from.y + (to.y - from.y) * ratio;
Point p = { x, y };
return p;
}
bool isCollisionFree(Point a, Point b) {
double d = distance(a, b);
int steps = ceil(d / step_size_);
double dx = (b.x - a.x) / steps;
double dy = (b.y - a.y) / steps;
for (int i = 0; i < steps; i++) {
double x = a.x + i * dx;
double y = a.y + i * dy;
if (isObstacle({ x, y })) {
return false;
}
}
return true;
}
bool isObstacle(Point p) {
// return true if p is inside the obstacle
return distance(p, { 0.5, 0.5 }) < obstacle_tolerance_;
}
bool connect(Point p, vector<Point>& tree, int nearest) {
while (true) {
Point new_point = steer(tree[nearest], p);
if (isCollisionFree(tree[nearest], new_point)) {
tree.push_back(new_point);
if (distance(new_point, goal_) < goal_tolerance_) {
return true;
}
p = new_point;
nearest = tree.size() - 1;
}
else {
return false;
}
}
}
void getPath(int last1, int last2, vector<Point>& path) {
path.push_back(tree1_[last1]);
while (last1 != 0) {
last1 = getParent(tree1_, last1);
path.push_back(tree1_[last1]);
}
reverse(path.begin(), path.end());
while (last2 != 0) {
last2 = getParent(tree2_, last2);
path.push_back(tree2_[last2]);
}
}
int getParent(vector<Point>& tree, int i) {
double min_distance = distance(tree[i], tree[0]);
int parent = 0;
for (int j = 1; j < i; j++) {
double d = distance(tree[j], tree[i]);
if (d < min_distance) {
min_distance = d;
parent = j;
}
}
return parent;
}
};
int main() {
Point start = { 0.1, 0.1 };
Point goal = { 0.9, 0.9 };
double step_size = 0.05;
double goal_tolerance = 0.01;
double obstacle_tolerance = 0.05;
RRT_Connect planner(start, goal, step_size, goal_tolerance, obstacle_tolerance);
vector<Point> path = planner.plan();
for (int i = 0; i < path.size(); i++) {
cout << path[i].x << " " << path[i].y << endl;
}
return 0;
}
```
请注意,这只是一个简单的实现示例,实际使用中还需要考虑更多的细节和调整,例如设置合适的参数和调整随机数生成器的种子以获得更好的性能,以及考虑更复杂的障碍物形状和大小。
阅读全文