# 构建CNN模型 model = Sequential() model.add(Embedding(input_dim=10000, output_dim=32, input_length=maxlen)) model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')) model.add(GlobalMaxPooling1D()) model.add(Dense(units=1, activation='sigmoid')) model.summary() # 编译模型并进行训练 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=64, epochs=10, validation_split=0.2) # 在测试集上进行评估 results = model.evaluate(x_test, y_test) print('Test loss:', results[0]) print('Test accuracy:', results[1])
时间: 2024-01-12 15:02:38 浏览: 189
这是一个使用Keras构建CNN模型的示例代码。具体来说,该模型包含一个嵌入层(embedding layer)、一个卷积层(convolutional layer)、一个全局最大池化层(global max pooling layer)和一个全连接层(dense layer)。
模型的输入是一个长度为`maxlen`的序列,每个元素都是一个大小为`input_dim`的向量。嵌入层将每个元素映射为一个`output_dim`维的向量。卷积层使用大小为3的卷积核对嵌入层的输出进行卷积,得到一个特征图。全局最大池化层对特征图进行池化,得到一个长度为32的向量。最后,全连接层将该向量映射为一个标量输出,使用sigmoid函数将其映射到0-1之间的概率值,表示该序列属于正类的概率。
模型使用adam优化器和二元交叉熵损失函数进行训练,并在训练集上训练10个epoch。训练过程中使用了64个样本进行一次梯度更新,同时使用了20%的训练数据作为验证集进行模型选择。最后,使用测试集对该模型进行评估,输出测试集上的损失和准确率。
相关问题
vectorizer = TfidfVectorizer() twitter_train_X = vectorizer.fit_transform(twitter_train_df['text']) twitter_test_X = vectorizer.transform(twitter_test_df['text']) twitter_train_y = twitter_train_df['sentiment'] twitter_test_y = twitter_test_df['sentiment'] # 构建 XGBoost 模型并训练 dtrain = xgb.DMatrix(twitter_train_X, label=twitter_train_y) dtest = xgb.DMatrix(twitter_test_X, label=twitter_test_y) param = {'max_depth': 3, 'eta': 0.1, 'objective': 'multi:softmax', 'num_class': 3} num_round = 100 bst = xgb.train(param, dtrain, num_round)可以帮我把这段代码换成卷积神经网络吗
当然可以,以下是使用卷积神经网络(CNN)实现文本分类的代码:
```python
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding, Conv1D, GlobalMaxPooling1D
# 构建神经网络模型
model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_length))
model.add(Conv1D(filters=num_filters, kernel_size=filter_sizes, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(X_test, y_test))
```
其中,`vocab_size` 表示词汇表大小,`embedding_size` 表示词向量维度,`max_length` 表示文本序列的最大长度,`num_filters` 表示卷积核的数量,`filter_sizes` 表示卷积核的大小,`num_classes` 表示分类的类别数,`batch_size` 表示批大小,`num_epochs` 表示训练轮数。`X_train` 和 `y_train` 分别表示训练集的特征和标签,`X_test` 和 `y_test` 分别表示测试集的特征和标签。
已知语料划分训练集和测试集,已知词向量预训练模型,比较三种深度学习模型完整代码
这里提供三种深度学习模型的完整代码,分别是CNN、LSTM和Transformer。
## CNN模型
```python
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Embedding, Conv1D, MaxPooling1D
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# 加载数据
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 参数设置
max_words = 1000
max_len = 100
embedding_dim = 100
filters = 64
kernel_size = 3
pool_size = 2
hidden_dims = 64
batch_size = 32
epochs = 10
# 构建模型
model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=max_len))
model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(Flatten())
model.add(Dense(hidden_dims))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# 训练模型
history = model.fit(train_data, train_labels, batch_size=batch_size, epochs=epochs, validation_data=(test_data, test_labels))
# 评估模型
score = model.evaluate(test_data, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
## LSTM模型
```python
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, LSTM, Embedding
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# 加载数据
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 参数设置
max_words = 1000
max_len = 100
embedding_dim = 100
hidden_dims = 64
batch_size = 32
epochs = 10
# 构建模型
model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=max_len))
model.add(LSTM(hidden_dims))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# 训练模型
history = model.fit(train_data, train_labels, batch_size=batch_size, epochs=epochs, validation_data=(test_data, test_labels))
# 评估模型
score = model.evaluate(test_data, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
## Transformer模型
```python
import numpy as np
import keras
from keras.models import Model
from keras.layers import Input, Dense, Dropout
from keras.layers import Embedding, Multiply, Lambda
from keras.layers import LayerNormalization, Add
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import keras.backend as K
# 加载数据
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 参数设置
max_words = 1000
max_len = 100
embedding_dim = 100
hidden_dims = 64
num_heads = 4
dropout_rate = 0.5
batch_size = 32
epochs = 10
# 定义Multi-head Attention层
class MultiHeadAttention(keras.layers.Layer):
def __init__(self, num_heads, head_size, dropout_rate=0.0, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.head_size = head_size
self.dropout_rate = dropout_rate
self.q_dense = Dense(num_heads * head_size, activation=None)
self.k_dense = Dense(num_heads * head_size, activation=None)
self.v_dense = Dense(num_heads * head_size, activation=None)
self.dropout = Dropout(dropout_rate)
self.output_dense = Dense(head_size * num_heads, activation=None)
def call(self, inputs):
q = self.q_dense(inputs)
k = self.k_dense(inputs)
v = self.v_dense(inputs)
q = K.reshape(q, (-1, K.shape(q)[1], self.num_heads, self.head_size))
q = K.permute_dimensions(q, (0, 2, 1, 3))
k = K.reshape(k, (-1, K.shape(k)[1], self.num_heads, self.head_size))
k = K.permute_dimensions(k, (0, 2, 1, 3))
v = K.reshape(v, (-1, K.shape(v)[1], self.num_heads, self.head_size))
v = K.permute_dimensions(v, (0, 2, 1, 3))
score = K.batch_dot(q, K.permute_dimensions(k, (0, 1, 3, 2)))
score /= K.sqrt(K.cast(self.head_size, dtype=K.floatx()))
score = K.softmax(score)
score = self.dropout(score)
context = K.batch_dot(score, v)
context = K.permute_dimensions(context, (0, 2, 1, 3))
context = K.reshape(context, (-1, K.shape(context)[1], self.num_heads * self.head_size))
output = self.output_dense(context)
return output
# 定义Transformer Block层
class TransformerBlock(keras.layers.Layer):
def __init__(self, num_heads, head_size, hidden_dims, dropout_rate=0.0, **kwargs):
super(TransformerBlock, self).__init__(**kwargs)
self.mha = MultiHeadAttention(num_heads, head_size, dropout_rate)
self.dropout1 = Dropout(dropout_rate)
self.ln1 = LayerNormalization()
self.dense1 = Dense(hidden_dims, activation='relu')
self.dropout2 = Dropout(dropout_rate)
self.dense2 = Dense(head_size * num_heads, activation=None)
self.dropout3 = Dropout(dropout_rate)
self.ln2 = LayerNormalization()
def call(self, inputs):
x = inputs
x = self.mha(x)
x = self.dropout1(x)
x = Add()([inputs, x])
x = self.ln1(x)
y = self.dense1(x)
y = self.dropout2(y)
y = self.dense2(y)
y = self.dropout3(y)
y = Add()([x, y])
y = self.ln2(y)
return y
# 构建模型
input = Input(shape=(max_len,))
x = Embedding(max_words, embedding_dim)(input)
x = Lambda(lambda x: x * np.sqrt(embedding_dim))(x)
x = TransformerBlock(num_heads, hidden_dims // num_heads, hidden_dims, dropout_rate)(x)
x = TransformerBlock(num_heads, hidden_dims // num_heads, hidden_dims, dropout_rate)(x)
x = Flatten()(x)
x = Dense(hidden_dims, activation='relu')(x)
x = Dropout(dropout_rate)(x)
output = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input, outputs=output)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# 训练模型
history = model.fit(train_data, train_labels, batch_size=batch_size, epochs=epochs, validation_data=(test_data, test_labels))
# 评估模型
score = model.evaluate(test_data, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
以上三种模型代码都是基于Keras框架实现的,其中CNN模型和LSTM模型比较简单,而Transformer模型则比较复杂,但也是当前NLP领域最为流行的模型之一。
阅读全文