各向异性高斯核中参数sigma如何确定,用python实现
时间: 2024-02-15 19:05:00 浏览: 98
一种基于高斯核函数的python代码
各向异性高斯核中的参数 sigma 可以通过交叉验证(Cross Validation)来确定。具体来说,可以将训练数据集分成 k 份,每次将其中一份作为验证集,其余的 k-1 份作为训练集,然后用训练集训练模型,用验证集来测试模型性能,最后选择性能最好的模型对测试集进行测试,从而得到最优的 sigma 值。
下面是使用 Python 实现交叉验证来确定各向异性高斯核中的参数 sigma 的代码:
```python
import numpy as np
from sklearn.model_selection import KFold
def cross_validation(X, y, k, sigmas):
"""
Computes the best sigma parameter for anisotropic Gaussian kernel using k-fold cross-validation.
Parameters:
X -- array_like, shape (m, n), training data
y -- array_like, shape (m, ), training labels
k -- int, number of folds for cross-validation
sigmas -- array_like, shape (n, ), sigma values to be tested
Returns:
best_sigma -- float, best sigma value
"""
# Convert to numpy arrays if necessary
X, y, sigmas = np.array(X), np.array(y), np.array(sigmas)
# Initialize variables
best_sigma, best_score = None, -float('inf')
# Split data into k folds
kf = KFold(n_splits=k, shuffle=True)
# Loop through each sigma value
for sigma in sigmas:
# Initialize validation score
val_score = 0
# Loop through each fold
for train_index, val_index in kf.split(X):
# Split data into training and validation sets
X_train, X_val = X[train_index], X[val_index]
y_train, y_val = y[train_index], y[val_index]
# Compute the anisotropic Gaussian kernel matrix
K_train = np.zeros((len(X_train), len(X_train)))
for i in range(len(X_train)):
for j in range(i+1, len(X_train)):
K_train[i, j] = anisotropic_gaussian_kernel(X_train[i], X_train[j], sigma)
K_train[j, i] = K_train[i, j]
# Train the model and make predictions
alpha = np.linalg.solve(K_train + 1e-6 * np.eye(len(X_train)), y_train)
y_val_pred = np.zeros(len(X_val))
for i in range(len(X_val)):
k_val = np.zeros(len(X_train))
for j in range(len(X_train)):
k_val[j] = anisotropic_gaussian_kernel(X_val[i], X_train[j], sigma)
y_val_pred[i] = np.dot(alpha, k_val)
# Compute the validation score
val_score += np.sum((y_val - y_val_pred) ** 2)
# Compute the average validation score
val_score /= k
# If the validation score is better, update the best sigma and best score
if val_score > best_score:
best_sigma, best_score = sigma, val_score
return best_sigma
```
其中,X 和 y 分别是训练数据和训练标签,k 是交叉验证的折数,sigmas 是需要测试的 sigma 值。函数返回最优的 sigma 值。在交叉验证过程中,我们先将训练数据集分成 k 份,然后在每一份上进行训练和验证,最后统计所有验证集的误差,取平均值作为该 sigma 值的误差。最终选取误差最小的 sigma 值作为最优值。在训练过程中,我们用解析解求解模型参数,然后用训练集和验证集来测试模型性能。在预测时,我们使用训练集的模型参数和验证集的特征,来预测验证集的标签。
阅读全文