image_out1[i-1,j]>0:
时间: 2024-03-30 17:34:14 浏览: 97
这段代码看上去像是在处理图像,通常 `image_out1` 是一个表示图像的二维数组。下面是对这段代码的解释:
- `i` 和 `j` 是循环变量,用于遍历 `image_out1` 中的每个元素。
- `image_out1[i-1,j]` 表示 `image_out1` 中第 `i-1` 行、第 `j` 列的像素值。
- `image_out1[i-1,j] > 0` 表示该像素的值是否大于0,也就是该像素是否为白色。如果该像素为白色,则条件成立。
- 整个判断语句 `if image_out1[i-1,j] > 0:` 表示如果该像素为白色,则执行下面缩进的代码块。
相关问题
clc clear all %% img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %% %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('name','滤波') imshow(img_blur) img_lab_blur = rgb2lab(img_blur); %% %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg') figure imshow(Sd_normalized) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) % 归一化至0-1 o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end改进该代码使其能在matlab上运行
clc;
clear all;
img_in = imread('ILSVRC2017_test_00000237.jpg');
m = size(img_in,1);
n = size(img_in,2);
img_lab = rgb2lab(img_in);
img_L_mean = mean(mean(img_lab(:,:,1)));
img_a_mean = mean(mean(img_lab(:,:,2)));
img_b_mean = mean(mean(img_lab(:,:,3)));
%高斯滤波
img_R = img_in(:,:,1);
img_G = img_in(:,:,2);
img_B = img_in(:,:,3);
w = fspecial('gaussian',[7 7]);
img_R_blur = imfilter(img_R,w);
img_G_blur = imfilter(img_G,w);
img_B_blur = imfilter(img_B,w);
img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur);
figure('Name','滤波');
imshow(img_blur);
img_lab_blur = rgb2lab(img_blur);
%计算显著图
Sd = zeros(m,n);
for i = 1:m
for j = 1:n
Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2);
end
end
%归一化
Sd_normalized = figure_normalize(Sd);
imwrite(Sd_normalized,'FT_saliency.jpg');
figure;
imshow(Sd_normalized);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Out_image = figure_normalize(In_image)
o_max_image = max(max(In_image));
o_min_image = min(min(In_image));
Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image);
end
将以下python代码转化为c++版本。import math import cv2 import numpy as np import os thre1=10 thre2=-10 r=60 ang =0 def select_point(image,ang): #根据遥杆方向确定跟踪点坐标 sinA=math.sin(ang) cosA=math.cos(ang) dirBaseX=int(cosA1000) disBaseY=int(-sinA1000) dirValMax=-1000000000 for i in range(len(image)): for j in range(len(image[0])): if image[i][j]==255: dirVal=idisBaseY+jdirBaseX if dirVal>dirValMax: rstRow=i rstCol=j dirValMax=dirVal return [rstCol,rstRow] sequence_path = "./images/" save_path="./out/" for file in os.listdir(sequence_path): filename=os.path.join(sequence_path, file) image=cv2.imread(filename, 0) image=cv2.blur(image,(3,3)) img=np.zeros((len(image), len(image[0])),np.uint8) for i in range(r,len(image)-r): for j in range(r,len(image[0])-r): shizi_1=( int(image[i][j])-int(image[i-r][j])>thre1 and int(image[i][j])-int(image[i][j-r])>thre1 and (int(image[i][j])-int(image[i+r][j])>thre1) and int(image[i][j])-int(image[i][j+r])>thre1 ) xieshizi_1=( int(image[i][j])-int(image[i-r][j-r])<thre2 and int(image[i][j])-int(image[i+r][j-r])<thre2 and int(image[i][j])-int(image[i-r][j+r])<thre2 and int(image[i][j])-int(image[i+r][j+r])<thre2 ) if (shizi_1 or xieshizi_1): img[i][j]=255 else: img[i][j] =0 retval, labels, stats, centroids = cv2.connectedComponentsWithStats(img, connectivity=8) maxVal = 0 index = 0 for i in range(1, len(stats)): if stats[i][4] > maxVal: maxVal = stats[i][4] index = i #x,y,h,w s for i in range(len(labels)): for j in range(len(labels[0])): if labels[i][j]==index: labels[i][j]=255 else: labels[i][j] = 0 img2=np.array(labels) target_x,target_y=select_point(img2,ang) print("跟踪点坐标:{}".format((target_x,target_y))) cv2.imwrite(os.path.join(save_path, file), cv2.circle(image,(int(target_x),int(target_y)),5,(255,255,0),2))
以下是将给定的Python代码转化为C++版本的示例:
```cpp
#include <iostream>
#include <cmath>
#include <opencv2/opencv.hpp>
int thre1 = 10;
int thre2 = -10;
int r = 60;
double ang = 0;
std::vector<int> select_point(cv::Mat image, double ang) {
double sinA = std::sin(ang);
double cosA = std::cos(ang);
int dirBaseX = static_cast<int>(cosA * 1000);
int disBaseY = static_cast<int>(-sinA * 1000);
int dirValMax = -1000000000;
int rstRow = 0, rstCol = 0;
for (int i = 0; i < image.rows; i++) {
for (int j = 0; j < image.cols; j++) {
if (image.at<uchar>(i, j) == 255) {
int dirVal = i * disBaseY + j * dirBaseX;
if (dirVal > dirValMax) {
rstRow = i;
rstCol = j;
dirValMax = dirVal;
}
}
}
}
return { rstCol, rstRow };
}
int main() {
std::string sequence_path = "./images/";
std::string save_path = "./out/";
for (const auto& file : std::filesystem::directory_iterator(sequence_path)) {
std::string filename = file.path().string();
cv::Mat image = cv::imread(filename, cv::IMREAD_GRAYSCALE);
cv::blur(image, image, cv::Size(3, 3));
cv::Mat img(image.rows, image.cols, CV_8UC1, cv::Scalar(0));
for (int i = r; i < image.rows - r; i++) {
for (int j = r; j < image.cols - r; j++) {
bool shizi_1 = (image.at<uchar>(i, j) - image.at<uchar>(i - r, j) > thre1 &&
image.at<uchar>(i, j) - image.at<uchar>(i, j - r) > thre1 &&
image.at<uchar>(i, j) - image.at<uchar>(i + r, j) > thre1 &&
image.at<uchar>(i, j) - image.at<uchar>(i, j + r) > thre1);
bool xieshizi_1 = (image.at<uchar>(i, j) - image.at<uchar>(i - r, j - r) < thre2 &&
image.at<uchar>(i, j) - image.at<uchar>(i + r, j - r) < thre2 &&
image.at<uchar>(i, j) - image.at<uchar>(i - r, j + r) < thre2 &&
image.at<uchar>(i, j) - image.at<uchar>(i + r, j + r) < thre2);
if (shizi_1 || xieshizi_1) {
img.at<uchar>(i, j) = 255;
}
else {
img.at<uchar>(i, j) = 0;
}
}
}
cv::Mat labels, stats, centroids;
int retval = cv::connectedComponentsWithStats(img, labels, stats, centroids, 8);
int maxVal = 0;
int index = 0;
for (int i = 1; i < stats.rows; i++) {
if (stats.at<int>(i, cv::CC_STAT_AREA) > maxVal) {
maxVal = stats.at<int>(i, cv::CC_STAT_AREA);
index = i;
}
}
for (int i = 0; i < labels.rows; i++) {
for (int j = 0; j < labels.cols; j++) {
if (labels.at<int>(i, j) == index) {
labels.at<int>(i, j) = 255;
}
else {
labels.at<int>(i, j) = 0;
}
}
}
cv::Mat img2(labels.rows, labels.cols, CV_8UC1);
labels.convertTo(img2, CV_8UC1);
std::vector<int> target = select_point(img2, ang);
int target_x = target[0];
int target_y = target[1];
std::cout << "跟踪点坐标:" << target_x << "," << target_y << std::endl;
cv::circle(image, cv::Point(target_x, target_y), 5, cv::Scalar(255, 255, 0), 2);
cv::imwrite(save_path + file.path().filename().string(), image);
}
return 0;
}
```
请注意,C++代码中的OpenCV库版本可能需要根据您的环境进行调整,并且可能需要包含适当的头文件和链接适当的库。此外,文件系统操作需要使用C++17标准。
阅读全文