image_out1[i-1,j]>0:

时间: 2024-03-30 17:34:14 浏览: 97
这段代码看上去像是在处理图像,通常 `image_out1` 是一个表示图像的二维数组。下面是对这段代码的解释: - `i` 和 `j` 是循环变量,用于遍历 `image_out1` 中的每个元素。 - `image_out1[i-1,j]` 表示 `image_out1` 中第 `i-1` 行、第 `j` 列的像素值。 - `image_out1[i-1,j] > 0` 表示该像素的值是否大于0,也就是该像素是否为白色。如果该像素为白色,则条件成立。 - 整个判断语句 `if image_out1[i-1,j] > 0:` 表示如果该像素为白色,则执行下面缩进的代码块。
相关问题

clc clear all %% img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %% %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('name','滤波') imshow(img_blur) img_lab_blur = rgb2lab(img_blur); %% %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg') figure imshow(Sd_normalized) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) % 归一化至0-1 o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end改进该代码使其能在matlab上运行

clc; clear all; img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('Name','滤波'); imshow(img_blur); img_lab_blur = rgb2lab(img_blur); %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg'); figure; imshow(Sd_normalized); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end

将以下python代码转化为c++版本。import math import cv2 import numpy as np import os thre1=10 thre2=-10 r=60 ang =0 def select_point(image,ang): #根据遥杆方向确定跟踪点坐标 sinA=math.sin(ang) cosA=math.cos(ang) dirBaseX=int(cosA1000) disBaseY=int(-sinA1000) dirValMax=-1000000000 for i in range(len(image)): for j in range(len(image[0])): if image[i][j]==255: dirVal=idisBaseY+jdirBaseX if dirVal>dirValMax: rstRow=i rstCol=j dirValMax=dirVal return [rstCol,rstRow] sequence_path = "./images/" save_path="./out/" for file in os.listdir(sequence_path): filename=os.path.join(sequence_path, file) image=cv2.imread(filename, 0) image=cv2.blur(image,(3,3)) img=np.zeros((len(image), len(image[0])),np.uint8) for i in range(r,len(image)-r): for j in range(r,len(image[0])-r): shizi_1=( int(image[i][j])-int(image[i-r][j])>thre1 and int(image[i][j])-int(image[i][j-r])>thre1 and (int(image[i][j])-int(image[i+r][j])>thre1) and int(image[i][j])-int(image[i][j+r])>thre1 ) xieshizi_1=( int(image[i][j])-int(image[i-r][j-r])<thre2 and int(image[i][j])-int(image[i+r][j-r])<thre2 and int(image[i][j])-int(image[i-r][j+r])<thre2 and int(image[i][j])-int(image[i+r][j+r])<thre2 ) if (shizi_1 or xieshizi_1): img[i][j]=255 else: img[i][j] =0 retval, labels, stats, centroids = cv2.connectedComponentsWithStats(img, connectivity=8) maxVal = 0 index = 0 for i in range(1, len(stats)): if stats[i][4] > maxVal: maxVal = stats[i][4] index = i #x,y,h,w s for i in range(len(labels)): for j in range(len(labels[0])): if labels[i][j]==index: labels[i][j]=255 else: labels[i][j] = 0 img2=np.array(labels) target_x,target_y=select_point(img2,ang) print("跟踪点坐标:{}".format((target_x,target_y))) cv2.imwrite(os.path.join(save_path, file), cv2.circle(image,(int(target_x),int(target_y)),5,(255,255,0),2))

以下是将给定的Python代码转化为C++版本的示例: ```cpp #include <iostream> #include <cmath> #include <opencv2/opencv.hpp> int thre1 = 10; int thre2 = -10; int r = 60; double ang = 0; std::vector<int> select_point(cv::Mat image, double ang) { double sinA = std::sin(ang); double cosA = std::cos(ang); int dirBaseX = static_cast<int>(cosA * 1000); int disBaseY = static_cast<int>(-sinA * 1000); int dirValMax = -1000000000; int rstRow = 0, rstCol = 0; for (int i = 0; i < image.rows; i++) { for (int j = 0; j < image.cols; j++) { if (image.at<uchar>(i, j) == 255) { int dirVal = i * disBaseY + j * dirBaseX; if (dirVal > dirValMax) { rstRow = i; rstCol = j; dirValMax = dirVal; } } } } return { rstCol, rstRow }; } int main() { std::string sequence_path = "./images/"; std::string save_path = "./out/"; for (const auto& file : std::filesystem::directory_iterator(sequence_path)) { std::string filename = file.path().string(); cv::Mat image = cv::imread(filename, cv::IMREAD_GRAYSCALE); cv::blur(image, image, cv::Size(3, 3)); cv::Mat img(image.rows, image.cols, CV_8UC1, cv::Scalar(0)); for (int i = r; i < image.rows - r; i++) { for (int j = r; j < image.cols - r; j++) { bool shizi_1 = (image.at<uchar>(i, j) - image.at<uchar>(i - r, j) > thre1 && image.at<uchar>(i, j) - image.at<uchar>(i, j - r) > thre1 && image.at<uchar>(i, j) - image.at<uchar>(i + r, j) > thre1 && image.at<uchar>(i, j) - image.at<uchar>(i, j + r) > thre1); bool xieshizi_1 = (image.at<uchar>(i, j) - image.at<uchar>(i - r, j - r) < thre2 && image.at<uchar>(i, j) - image.at<uchar>(i + r, j - r) < thre2 && image.at<uchar>(i, j) - image.at<uchar>(i - r, j + r) < thre2 && image.at<uchar>(i, j) - image.at<uchar>(i + r, j + r) < thre2); if (shizi_1 || xieshizi_1) { img.at<uchar>(i, j) = 255; } else { img.at<uchar>(i, j) = 0; } } } cv::Mat labels, stats, centroids; int retval = cv::connectedComponentsWithStats(img, labels, stats, centroids, 8); int maxVal = 0; int index = 0; for (int i = 1; i < stats.rows; i++) { if (stats.at<int>(i, cv::CC_STAT_AREA) > maxVal) { maxVal = stats.at<int>(i, cv::CC_STAT_AREA); index = i; } } for (int i = 0; i < labels.rows; i++) { for (int j = 0; j < labels.cols; j++) { if (labels.at<int>(i, j) == index) { labels.at<int>(i, j) = 255; } else { labels.at<int>(i, j) = 0; } } } cv::Mat img2(labels.rows, labels.cols, CV_8UC1); labels.convertTo(img2, CV_8UC1); std::vector<int> target = select_point(img2, ang); int target_x = target[0]; int target_y = target[1]; std::cout << "跟踪点坐标:" << target_x << "," << target_y << std::endl; cv::circle(image, cv::Point(target_x, target_y), 5, cv::Scalar(255, 255, 0), 2); cv::imwrite(save_path + file.path().filename().string(), image); } return 0; } ``` 请注意,C++代码中的OpenCV库版本可能需要根据您的环境进行调整,并且可能需要包含适当的头文件和链接适当的库。此外,文件系统操作需要使用C++17标准。
阅读全文

相关推荐

这是一个crossattention模块:class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) 我如何从中提取各个提示词的注意力热力图并用Gradio可视化?

zip

最新推荐

recommend-type

CCS3.3里面,使用View -Graph-Image显示图片 DSP图片显示

I(i,j)=0.2989*r(i,j)+0.5870*g(i,j)+0.1140*b(i,j); end end I2=[r,g,b]; I1=double(I); imview(I1,map); fid=fopen('f:\bmp.dat','wt'); n=0; for i=1:256 for j=1:256 n=n+1; fprintf(fid,'0x%x,\t',I1(i,j)...
recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

【java毕业设计】智慧社区老人健康监测门户.zip

有java环境就可以运行起来 ,zip里包含源码+论文+PPT, 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上
recommend-type

【java毕业设计】智慧社区心理咨询平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

计算机系统基础实验LinkLab实验及解答:深入理解ELF文件与链接过程

内容概要:本文档详细介绍了LinkLab实验的五个阶段,涵盖了ELF文件的组成、符号表的理解、代码节与重定位位置的修改等内容。每个阶段都有具体的实验要求和步骤,帮助学生理解链接的基本概念和链接过程中涉及的各项技术细节。 适合人群:计算机科学专业的本科生,特别是正在修读《计算机系统基础》课程的学生。 使用场景及目标:① 通过实际操作加深对链接过程和ELF文件的理解;② 掌握使用readelf、objdump和hexedit等工具的技巧;③ 实现特定输出以验证实验结果。 阅读建议:实验过程中的每个阶段都有明确的目标和提示,学生应按照步骤逐步操作,并结合反汇编代码和二进制编辑工具进行实践。在完成每个阶段的实验后,应及时记录实验结果和遇到的问题,以便于总结和反思。
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"