这是一个crossattention模块:class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) 我如何从中提取各个提示词的注意力热力图并用Gradio可视化?
时间: 2024-04-15 22:30:50 浏览: 216
要从CrossAttention模块中提取各个提示词的注意力热力图并用Gradio可视化,可以按照以下步骤进行:
1. 首先,导入所需的库:
```python
import torch
from PIL import Image
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义CrossAttention模块的网络结构及参数:
```python
# 在上述代码之前添加
from torch import nn
from einops import rearrange, repeat, reduce
# 定义CrossAttention模块
class CrossAttention(nn.Module):
...
```
3. 定义函数来生成注意力热力图:
```python
def generate_attention_map(model, x):
# 将模型设置为评估模式
model.eval()
# 将输入张量转换为PyTorch张量
x = torch.from_numpy(x).unsqueeze(0)
# 使用模型进行前向传播
with torch.no_grad():
attention_map = model(x)
# 将注意力热力图从PyTorch张量转换为NumPy数组
attention_map = attention_map.squeeze(0).numpy()
return attention_map
```
4. 定义函数来可视化注意力热力图:
```python
def visualize_attention_map(attention_map):
# 使用Matplotlib库绘制热力图
plt.imshow(attention_map, cmap='hot', interpolation='nearest')
plt.axis('off')
plt.show()
```
5. 定义Gradio界面和回调函数:
```python
def gradio_interface(model):
def inference(input_image):
# 将输入图像转换为NumPy数组
input_image = input_image.astype(np.float32) / 255.0
# 生成注意力热力图
attention_map = generate_attention_map(model, input_image)
# 可视化注意力热力图
visualize_attention_map(attention_map)
# 定义输入界面,类型为图像
input_interface = gr.inputs.Image()
# 定义输出界面,类型为无
output_interface = gr.outputs.Textbox()
# 创建Gradio界面
gr.Interface(fn=inference, inputs=input_interface, outputs=output_interface).launch()
# 加载预训练的CrossAttention模型
model = CrossAttention(query_dim=..., context_dim=..., heads=..., dim_head=...)
# 启动Gradio界面
gradio_interface(model)
```
请确保在代码中替换`query_dim`、`context_dim`、`heads`和`dim_head`的值为你模型的实际参数。然后,运行代码并访问Gradio界面,上传图像后即可看到生成的注意力热力图。
注意:以上代码仅为示例,具体实现可能因模型结构和需求而有所不同。你可能需要根据你的具体情况进行适当的修改。
阅读全文