颜色阈值分割流程图 MATLAB和Python
时间: 2023-11-19 18:09:07 浏览: 114
以下是颜色阈值分割的流程图,包括MATLAB和Python的代码实现。
## MATLAB实现
```matlab
% 加载图像
img = imread('example.jpg');
% 转换为HSV颜色空间
hsv = rgb2hsv(img);
% 提取颜色通道
h = hsv(:,:,1);
s = hsv(:,:,2);
v = hsv(:,:,3);
% 设置阈值
h_threshold = [0.1 0.8];
s_threshold = [0.2 1];
v_threshold = [0.2 1];
% 应用阈值
mask = (h >= h_threshold(1) & h <= h_threshold(2)) & ...
(s >= s_threshold(1) & s <= s_threshold(2)) & ...
(v >= v_threshold(1) & v <= v_threshold(2));
% 显示结果
figure;
subplot(1,2,1), imshow(img), title('原图');
subplot(1,2,2), imshow(mask), title('分割结果');
```
## Python实现
```python
import cv2
# 加载图像
img = cv2.imread('example.jpg')
# 转换为HSV颜色空间
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 提取颜色通道
h = hsv[:,:,0]
s = hsv[:,:,1]
v = hsv[:,:,2]
# 设置阈值
h_threshold = [0.1, 0.8]
s_threshold = [0.2, 1]
v_threshold = [0.2, 1]
# 应用阈值
mask = cv2.inRange(hsv, (h_threshold[0]*255, s_threshold[0]*255, v_threshold[0]*255),
(h_threshold[1]*255, s_threshold[1]*255, v_threshold[1]*255))
# 显示结果
cv2.imshow('Original', img)
cv2.imshow('Segmented', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文