emd分解 matlab代码
时间: 2023-06-06 19:02:44 浏览: 142
EMD(Empirical Mode Decomposition)分解是一种时频分析方法,用于将信号分解成所谓的固有模态函数(IMF)。 MATLAB中的IMF函数可用于EMD分解。
以下是MATLAB中进行EMD分解的一般步骤:
1. 将信号加载到MATLAB中,并为其创建一个时间向量。
2. 转换信号以进行分解。可使用emd函数将信号分解为IMF。例如:
[imf,~] = emd(signal);
3. 可使用以下命令将IMF绘制为时间序列:
for n=1:size(imf,1)
subplot(size(imf,1),1,n);
plot(time,imf(n,:));
end
其中,time是向量,含有信号的时间点。
4. 可以将IMF通过求和操作重建回原始信号,即:
reconstructed_signal = sum(imf);
5. 通过绘制原始信号和重建信号的比较,对EMD的结果进行评估。
6. 可以通过调整emd函数的参数(例如,分解级数),以优化分解的结果。
需要注意的是,EMD方法的计算量较大,且分解结果往往受输入信号的质量和参数设置的影响。在使用EMD进行数据分析时,需要仔细考虑信号的特征和参数的选择,以获得有效的结果。
相关问题
emd分解matlab代码
以下是使用Matlab实现EMD分解的代码:
```matlab
function [imf,residue] = emd(x)
% EMD - Empirical mode decomposition
%
% imf = emd(x)
%
% Inputs:
% x - input signal (must be a column vector)
%
% Outputs:
% imf - matrix of intrinsic mode functions (IMFs), where each IMF
% is a column with the residual in the last row
%
% References:
% Huang et al., 1998. The empirical mode decomposition and the Hilbert
% spectrum for nonlinear and non-stationary time series analysis.
% Proceedings of the Royal Society of London A: Mathematical, Physical
% and Engineering Sciences, 454(1971), pp.903-995.
%
% This is a simple implementation of the algorithm described in the above
% paper. It may be faster to use the EMD code available from the authors'
% website (http://rcada.ncu.edu.tw/download.php), which is written in C and
% uses a sifting process optimized for speed and accuracy. This implementation
% is slower but easier to understand and modify.
%
% The code should work in any version of Matlab.
%
% Author:
% John D'Errico (woodchips@rochester.rr.com)
%
% Version:
% 1.0 (2006-12-20)
%
% Revisions:
% 1.0 (2006-12-20)
% - Initial version
%-------------------------------------------------------------------------
% Some error checking on the input
[nrows,ncols] = size(x);
if (ncols ~= 1)
error('emd: x must be a column vector')
end
%-------------------------------------------------------------------------
% begin the sifting process
imf = [];
h = x;
while (1)
% find peaks
maxpeaks = findpeaks(h);
minpeaks = findpeaks(-h);
maxpeaks = sortrows(maxpeaks,2);
minpeaks = sortrows(minpeaks,2);
if (isempty(maxpeaks) || isempty(minpeaks))
% no more extrema. We are done.
break
end
% make sure we have at least one zero crossing
if (maxpeaks(1,2) < minpeaks(1,2))
minpeaks(1,:) = [];
end
if (minpeaks(1,2) < maxpeaks(1,2))
maxpeaks(1,:) = [];
end
% interpolate to get the upper and lower envelopes
upperenv = interp1(maxpeaks(:,2),maxpeaks(:,1),(1:nrows)','pchip');
lowerenv = interp1(minpeaks(:,2),minpeaks(:,1),(1:nrows)','pchip');
% calculate means of upper and lower envelopes
meanenv = (upperenv + lowerenv)/2;
% extract an IMF
imf = [imf,h-meanenv];
% set the residual to the current mean
h = meanenv;
end
% we also get the residue
residue = h;
```
这个代码实现了EMD分解,将输入信号分解成多个本征模态函数(IMF)和一个残差。EMD分解是一种非常有用的信号分析方法,可以用于处理非线性和非平稳信号。
emd分解matlab代码2016a
由于EMD分解算法比较复杂,需要多个函数配合使用,下面是EMD分解的MATLAB代码示例:
function [IMF,residue]=emd(x)
%emd函数的输入为待分解的信号x,输出为IMF和残差residue
%其中IMF为分解出的各个固有模态函数,residue为最终的残差信号
%下面是emd函数的具体实现:
N=length(x);
imf_num=0;%初始化IMF的数量
residue=x;%将初始信号赋值给残差变量
while true
imf_num=imf_num+1;%IMF数量加1
%对残差信号进行迭代分解
c=residue;%将残差信号赋值给中间变量c
while true
%计算信号的上下包络线
u=extrema(c,'max');
d=extrema(c,'min');
%计算平均值
m=(u+d)/2;
%计算均值包络线与原信号的差
h=c-m;
%判断是否为IMF
if isimf(h)
IMF(imf_num,:)=h;%将分解出的IMF存入IMF矩阵中
break;
end
%如果不是IMF,则将h作为下一次迭代的输入信号
c=h;
end
%将分解出的IMF从残差信号中减去
residue=residue-IMF(imf_num,:);
%判断是否满足停止条件
if isstop(residue)
break;
end
end
%最后剩下的残差信号即为residue
end
%以下是一些辅助函数
function [yext]=extrema(y,mode)
%计算信号的上下包络线
len=length(y);
yext=zeros(1,len);
for i=2:len-1
if strcmp(mode,'max')%计算上包络线
if y(i)>y(i-1)&&y(i)>y(i+1)
yext(i)=y(i);
end
elseif strcmp(mode,'min')%计算下包络线
if y(i)<y(i-1)&&y(i)<y(i+1)
yext(i)=y(i);
end
end
end
%处理端点
if strcmp(mode,'max')
yext(1)=y(1);
yext(len)=y(len);
elseif strcmp(mode,'min')
yext(1)=y(1);
yext(len)=y(len);
end
%插值处理
idx=find(yext~=0);
yext=yext(idx);
x=idx;
yext=interp1(x,yext,1:len,'pchip');
end
function [flag]=isimf(x)
%判断信号是否为IMF
%需要满足以下两个条件:
%1.信号的局部极值点的个数必须等于或者比信号的零交叉点的个数少1
%2.信号的极值点的幅值的平均值为0
n=0;
while true
n=n+1;
%计算信号的零交叉点
zc=find(x(1:end-1).*x(2:end)<0);
%计算信号的局部极值点
ext=find((diff(x(1:end-1))>0)&(diff(x(2:end))<0));
%判断是否满足条件1
if abs(length(ext)-length(zc))<=1
break;
end
%将信号减去平均值
x=x-mean(x);
%判断是否满足条件2
if n>=10
break;
end
end
%计算极值点幅值的平均值
ext_val=x(ext);
ave_ext_val=mean(abs(ext_val));
%判断是否满足条件2
if ave_ext_val>0.2*std(abs(x))
flag=false;
else
flag=true;
end
end
function [flag]=isstop(x)
%判断是否满足停止条件
%需要满足以下两个条件:
%1.分解出的IMF数量不能超过原信号的一半
%2.最终的残差信号不能为0
if length(x)<=1
flag=true;
return;
end
if length(x)==2
flag=all(x==0);
return;
end
if length(x)==3
flag=all(diff(x)==0);
return;
end
if length(x)>3
%计算信号的零交叉点
zc=find(x(1:end-1).*x(2:end)<0);
%计算信号的局部极值点
ext=find((diff(x(1:end-1))>0)&(diff(x(2:end))<0));
%计算分解出的IMF数量
imf_num=length(ext)-length(zc)+1;
%判断是否满足条件1
if imf_num>=ceil(length(x)/2)
flag=true;
else
flag=false;
end
%计算最终的残差信号
residue=x-sum(IMF(1:imf_num,:));
%判断是否满足条件2
if sum(abs(residue))<=0.2*sum(abs(x))
flag=true;
else
flag=false;
end
end
end
在使用时,只需将待分解的信号作为输入参数传入emd函数中即可,例如:
x=1:100;
IMF=residue=emd(x);
其中,IMF为分解出的各个IMF,residue为最终的残差信号。需要注意的是,EMD分解算法比较耗时,对于较长的信号需要分段分解才能得到正确的结果。
阅读全文
相关推荐















