信号处理emd分解的matlab代码
时间: 2023-09-23 08:02:31 浏览: 120
以下是使用 Matlab 实现 EMD(经验模态分解)的示例代码:
```matlab
function [imf,residual] = emd(x)
% Empirical Mode Decomposition
% x - input signal (must be a column vector)
% imf - matrix of intrinsic mode functions (each as a column)
% residual - residual signal
% reference: Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, Vol. 454, pp. 903-995, 1998.
% author: Hayden Schaeffer
% date: 1/25/2019
% set stopping criterion and maximum number of iterations
epsilon = 0.05;
numIter = 1000;
% initialize residual
r = x;
% initialize counter
nIMF = 0;
% initialize matrix of intrinsic mode functions
imf = [];
while ~ismonotonic(r) && nIMF < numIter
% initialize iteration
h = r;
% extract local maxima and minima
maxmin = zeros(length(r),2);
maxmin(:,1) = islocalmax(h);
maxmin(:,2) = islocalmin(h);
% identify number of extrema
nExtrema = sum(maxmin(:,1)) + sum(maxmin(:,2));
% limit iterations
if nExtrema < 3
break;
end
% iterate until monotonic
while ~ismonotonic(h)
% interpolate local maxima and minima
pmax = interp1(find(maxmin(:,1)),h(maxmin(:,1)),1:length(h),'pchip','extrap');
pmin = interp1(find(maxmin(:,2)),h(maxmin(:,2)),1:length(h),'pchip','extrap');
% calculate mean envelope
m = (pmax + pmin)/2;
% calculate difference between signal and mean envelope
d = h - m;
% update residual
r = r - d;
% update iteration
h = d;
% increment iteration counter
nIMF = nIMF + 1;
% limit iterations
if nIMF > numIter
break;
end
end
% add current IMF to matrix
imf = [imf r];
% update residual
r = x - sum(imf,2);
% check stopping criterion
if sum(abs(r)) < epsilon
break;
end
end
% add final residual to matrix
residual = r;
end
function tf = ismonotonic(x)
% check if vector is monotonic
tf = ~(any(diff(x) > 0) && any(diff(x) < 0));
end
```
使用示例:
```matlab
% generate test signal
t = linspace(0,1,1000)';
x = sin(2*pi*50*t) + sin(2*pi*120*t) + sin(2*pi*200*t);
% perform EMD
[imf,residual] = emd(x);
% plot results
figure;
subplot(length(imf)+1,1,1);
plot(t,x);
title('Input Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-3 3]);
for k = 1:length(imf)
subplot(length(imf)+1,1,k+1);
plot(t,imf(:,k));
title(['IMF ' num2str(k)]);
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
end
subplot(length(imf)+1,1,length(imf)+1);
plot(t,residual);
title('Residual');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
```
这将生成一个包含输入信号及其每个 IMFs 和残差的图形。
阅读全文