EMD分解代码matlab
时间: 2023-09-28 08:10:30 浏览: 207
在MATLAB中,进行EMD分解的代码如下所示:
```matlab
% 加载所需的信号到MATLAB工作区
load noisy_signal.mat
% 创建emd对象
emd_obj = emd(noisy_signal);
% 将信号进行EMD分解
imfs = emd_obj.emd('NumIMF', 4);
% 绘制结果
figure();
num_imfs = size(imfs, 2);
x_axis = 1:length(noisy_signal);
for i = 1:num_imfs
subplot(num_imfs, 1, i);
plot(x_axis, imfs(:, i));
title(['IMF', num2str(i)]);
xlim([1 length(noisy_signal)]);
end
```
这段代码首先加载所需的信号到MATLAB工作区,然后创建emd对象。接下来,使用 "emd" 函数对信号进行EMD分解,将得到的IMF分量保存在imfs矩阵中。最后,利用MATLAB的绘图功能,将分解出来的IMF分量可视化展示出来。需要注意的是,根据具体的信号特征,我们需要合理选择IMFs的数量来控制分解的级别,以避免过度分解产生噪声分量。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
相关问题
信号处理emd分解的matlab代码
以下是使用 Matlab 实现 EMD(经验模态分解)的示例代码:
```matlab
function [imf,residual] = emd(x)
% Empirical Mode Decomposition
% x - input signal (must be a column vector)
% imf - matrix of intrinsic mode functions (each as a column)
% residual - residual signal
% reference: Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, Vol. 454, pp. 903-995, 1998.
% author: Hayden Schaeffer
% date: 1/25/2019
% set stopping criterion and maximum number of iterations
epsilon = 0.05;
numIter = 1000;
% initialize residual
r = x;
% initialize counter
nIMF = 0;
% initialize matrix of intrinsic mode functions
imf = [];
while ~ismonotonic(r) && nIMF < numIter
% initialize iteration
h = r;
% extract local maxima and minima
maxmin = zeros(length(r),2);
maxmin(:,1) = islocalmax(h);
maxmin(:,2) = islocalmin(h);
% identify number of extrema
nExtrema = sum(maxmin(:,1)) + sum(maxmin(:,2));
% limit iterations
if nExtrema < 3
break;
end
% iterate until monotonic
while ~ismonotonic(h)
% interpolate local maxima and minima
pmax = interp1(find(maxmin(:,1)),h(maxmin(:,1)),1:length(h),'pchip','extrap');
pmin = interp1(find(maxmin(:,2)),h(maxmin(:,2)),1:length(h),'pchip','extrap');
% calculate mean envelope
m = (pmax + pmin)/2;
% calculate difference between signal and mean envelope
d = h - m;
% update residual
r = r - d;
% update iteration
h = d;
% increment iteration counter
nIMF = nIMF + 1;
% limit iterations
if nIMF > numIter
break;
end
end
% add current IMF to matrix
imf = [imf r];
% update residual
r = x - sum(imf,2);
% check stopping criterion
if sum(abs(r)) < epsilon
break;
end
end
% add final residual to matrix
residual = r;
end
function tf = ismonotonic(x)
% check if vector is monotonic
tf = ~(any(diff(x) > 0) && any(diff(x) < 0));
end
```
使用示例:
```matlab
% generate test signal
t = linspace(0,1,1000)';
x = sin(2*pi*50*t) + sin(2*pi*120*t) + sin(2*pi*200*t);
% perform EMD
[imf,residual] = emd(x);
% plot results
figure;
subplot(length(imf)+1,1,1);
plot(t,x);
title('Input Signal');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-3 3]);
for k = 1:length(imf)
subplot(length(imf)+1,1,k+1);
plot(t,imf(:,k));
title(['IMF ' num2str(k)]);
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
end
subplot(length(imf)+1,1,length(imf)+1);
plot(t,residual);
title('Residual');
xlabel('Time (s)');
ylabel('Amplitude');
ylim([-1 1]);
```
这将生成一个包含输入信号及其每个 IMFs 和残差的图形。
emd分解原理matlab
EMD(Empirical Mode Decomposition)是一种将非线性和非平稳信号分解成一组本征模态函数(Empirical Mode Functions,EMF)的方法。
EMD分解原理:
1. 将信号的局部极大值和局部极小值连接起来,得到上包络线和下包络线。
2. 计算信号的平均值,得到平均线。
3. 将信号减去平均线,得到一条新的信号。
4. 对新的信号重复1~3步,直到剩余的信号是一个单调函数。
5. 将分解出的每个本征模态函数相加,得到原始信号的近似。
EMD分解的MATLAB实现:
使用MATLAB内置函数`emd`进行EMD分解。代码示例:
```matlab
% 生成示例信号
t = linspace(0, 1, 1000);
x = sin(10*pi*t.^2) + cos(20*pi*t);
% EMD分解
imf = emd(x);
n_imf = size(imf, 2);
% 绘制分解结果
subplot(n_imf+1, 1, 1);
plot(t, x);
title('Original Signal');
for i = 1:n_imf
subplot(n_imf+1, 1, i+1);
plot(t, imf(:,i));
title(['IMF ', num2str(i)]);
end
```
该代码将生成一个示例信号,并使用`emd`函数对其进行EMD分解,最终绘制出分解结果。
阅读全文
相关推荐












