emd分解matlab代码
时间: 2023-08-14 09:07:13 浏览: 174
以下是使用Matlab实现EMD分解的代码:
```matlab
function [imf,residue] = emd(x)
% EMD - Empirical mode decomposition
%
% imf = emd(x)
%
% Inputs:
% x - input signal (must be a column vector)
%
% Outputs:
% imf - matrix of intrinsic mode functions (IMFs), where each IMF
% is a column with the residual in the last row
%
% References:
% Huang et al., 1998. The empirical mode decomposition and the Hilbert
% spectrum for nonlinear and non-stationary time series analysis.
% Proceedings of the Royal Society of London A: Mathematical, Physical
% and Engineering Sciences, 454(1971), pp.903-995.
%
% This is a simple implementation of the algorithm described in the above
% paper. It may be faster to use the EMD code available from the authors'
% website (http://rcada.ncu.edu.tw/download.php), which is written in C and
% uses a sifting process optimized for speed and accuracy. This implementation
% is slower but easier to understand and modify.
%
% The code should work in any version of Matlab.
%
% Author:
% John D'Errico (woodchips@rochester.rr.com)
%
% Version:
% 1.0 (2006-12-20)
%
% Revisions:
% 1.0 (2006-12-20)
% - Initial version
%-------------------------------------------------------------------------
% Some error checking on the input
[nrows,ncols] = size(x);
if (ncols ~= 1)
error('emd: x must be a column vector')
end
%-------------------------------------------------------------------------
% begin the sifting process
imf = [];
h = x;
while (1)
% find peaks
maxpeaks = findpeaks(h);
minpeaks = findpeaks(-h);
maxpeaks = sortrows(maxpeaks,2);
minpeaks = sortrows(minpeaks,2);
if (isempty(maxpeaks) || isempty(minpeaks))
% no more extrema. We are done.
break
end
% make sure we have at least one zero crossing
if (maxpeaks(1,2) < minpeaks(1,2))
minpeaks(1,:) = [];
end
if (minpeaks(1,2) < maxpeaks(1,2))
maxpeaks(1,:) = [];
end
% interpolate to get the upper and lower envelopes
upperenv = interp1(maxpeaks(:,2),maxpeaks(:,1),(1:nrows)','pchip');
lowerenv = interp1(minpeaks(:,2),minpeaks(:,1),(1:nrows)','pchip');
% calculate means of upper and lower envelopes
meanenv = (upperenv + lowerenv)/2;
% extract an IMF
imf = [imf,h-meanenv];
% set the residual to the current mean
h = meanenv;
end
% we also get the residue
residue = h;
```
这个代码实现了EMD分解,将输入信号分解成多个本征模态函数(IMF)和一个残差。EMD分解是一种非常有用的信号分析方法,可以用于处理非线性和非平稳信号。
阅读全文