三个差速无人车通过领航-跟随编队,基于滑模控制器,python代码
时间: 2023-06-11 19:06:35 浏览: 428
以下是基于滑模控制器的三个差速无人车领航-跟随编队的Python代码示例:
```
import numpy as np
import matplotlib.pyplot as plt
# 定义滑模控制器
def sliding_control(x, xd, lambda_):
u = -lambda_ * np.sign(x - xd)
return u
# 定义差速无人车类
class DifferentialDriveVehicle:
def __init__(self, x, y, theta, L, v_min, v_max, w_min, w_max):
self.x = x
self.y = y
self.theta = theta
self.L = L
self.v_min = v_min
self.v_max = v_max
self.w_min = w_min
self.w_max = w_max
def update_pose(self, v, w, dt):
self.x += v * np.cos(self.theta) * dt
self.y += v * np.sin(self.theta) * dt
self.theta += w * dt
def get_pose(self):
return self.x, self.y, self.theta
def control(self, x, y, theta, k1, k2, k3):
# 计算控制输入
dx = x - self.x
dy = y - self.y
rho = np.sqrt(dx**2 + dy**2)
alpha = np.arctan2(dy, dx) - self.theta
alpha = np.arctan2(np.sin(alpha), np.cos(alpha))
beta = -self.theta - alpha + theta
beta = np.arctan2(np.sin(beta), np.cos(beta))
v = k1 * rho * np.cos(alpha)
w = k2 * alpha + k3 * beta
# 对速度和角速度进行限制
v = np.clip(v, self.v_min, self.v_max)
w = np.clip(w, self.w_min, self.w_max)
# 对差速无人车进行控制
vl = v - self.L/2 * w
vr = v + self.L/2 * w
return vl, vr
# 初始化三个差速无人车
vehicle1 = DifferentialDriveVehicle(0, 0, 0, 0.5, -1, 1, -2, 2)
vehicle2 = DifferentialDriveVehicle(2, 0, 0, 0.5, -1, 1, -2, 2)
vehicle3 = DifferentialDriveVehicle(4, 0, 0, 0.5, -1, 1, -2, 2)
# 定义领航-跟随编队的目标轨迹
T = np.linspace(0, 10, 100)
X = np.sin(T)
Y = np.cos(T)
# 设置滑模控制器参数
lambda_ = 1
epsilon = 1e-5
# 进行仿真
dt = 0.1
for i in range(len(T)):
# 计算领航-跟随编队的目标姿态
if i+1 < len(T):
x_d, y_d = X[i+1], Y[i+1]
else:
x_d, y_d = X[-1], Y[-1]
theta_d = np.arctan2(y_d - Y[i], x_d - X[i])
# 对三个差速无人车进行控制
vl1, vr1 = vehicle1.control(X[i], Y[i], theta_d, 1, 2, 1)
vl2, vr2 = vehicle2.control(vehicle1.x, vehicle1.y, vehicle1.theta, 1, 2, 1)
vl3, vr3 = vehicle3.control(vehicle2.x, vehicle2.y, vehicle2.theta, 1, 2, 1)
# 计算滑模控制器控制输入
u1 = sliding_control(vehicle1.x - vehicle2.x, epsilon, lambda_)
u2 = sliding_control(vehicle2.x - vehicle3.x, epsilon, lambda_)
# 对差速无人车进行控制
vehicle1.update_pose((vl1 + u1)/2, (vr1 + u1)/2, dt)
vehicle2.update_pose((vl2 + u2)/2, (vr2 + u2)/2, dt)
vehicle3.update_pose((vl3 + u2)/2, (vr3 + u2)/2, dt)
# 绘制差速无人车轨迹
plt.plot(vehicle1.x, vehicle1.y, 'bo')
plt.plot(vehicle2.x, vehicle2.y, 'go')
plt.plot(vehicle3.x, vehicle3.y, 'ro')
# 绘制目标轨迹
plt.plot(X, Y, 'k--')
plt.axis('equal')
plt.show()
```
在上述代码中,我们首先定义了滑模控制器函数`sliding_control()`,然后定义了差速无人车类`DifferentialDriveVehicle`,包括其位置、姿态、车轮间距、速度和角速度限制等属性,以及控制函数`control()`,用于计算控制输入。接着,我们初始化了三个差速无人车,并定义了领航-跟随编队的目标轨迹。在仿真过程中,我们首先计算领航-跟随编队的目标姿态,然后对三个差速无人车进行控制,计算出滑模控制器的控制输入,再进行差速无人车的控制,最后绘制差速无人车的轨迹。
阅读全文