python“sampleinminmax = np.array([samplein.min(axis=1).T.tolist()[0],samplein.max(axis=1).T.tolist()[0]]).transpose() ”
时间: 2024-05-24 15:13:55 浏览: 128
这是一个将二维数组的每一行进行最小值和最大值计算后,将结果按行组成一个新的二维数组的代码。具体的实现步骤是,使用numpy库的min函数和max函数分别计算每一行的最小值和最大值,然后使用tolist()方法将结果转换为list类型,接着将两个list按行组合成一个新的二维数组,最终使用transpose()方法将其转置得到最终的结果。
相关问题
注释sampleinminmax = np.array([samplein.min(axis=1).T.tolist()[0],samplein.max(axis=1).T.tolist()[0]]).transpose()
这行代码的作用是将一个二维数组samplein中每行的最小值和最大值提取出来,组成一个新的二维数组sampleinminmax。具体解释如下:
1. samplein.min(axis=1):计算samplein中每行的最小值,返回一个一维数组。
2. samplein.min(axis=1).T:将上一步得到的一维数组转置,得到一个行向量。
3. samplein.min(axis=1).T.tolist():将上一步得到的行向量转换成Python列表。
4. samplein.min(axis=1).T.tolist()[0]:取出列表中的第一个元素,即最小值的列表。
5. samplein.max(axis=1):计算samplein中每行的最大值,返回一个一维数组。
6. samplein.max(axis=1).T:将上一步得到的一维数组转置,得到一个行向量。
7. samplein.max(axis=1).T.tolist():将上一步得到的行向量转换成Python列表。
8. samplein.max(axis=1).T.tolist()[0]:取出列表中的第一个元素,即最大值的列表。
9. np.array([samplein.min(axis=1).T.tolist()[0],samplein.max(axis=1).T.tolist()[0]]):将最小值和最大值列表组成一个二维数组。
10. .transpose():将二维数组转置,得到一个列向量。
11. 将得到的列向量赋值给变量sampleinminmax。
使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::vector<double> eigen_list;
MatrixXd data(6, 6);
data << 1, 2, 4, 7, 6, 3,
3, 20, 1, 2, 5, 4,
2, 0, 1, 5, 8, 6,
5, 3, 3, 6, 3, 2,
6, 0, 5, 2, 19, 3,
5, 2, 4, 9, 6, 3;
MatrixXd g_csi_corr = data.transpose() * data / 6.0;
EigenSolver<MatrixXd> es(g_csi_corr);
VectorXd eigenvalue = es.eigenvalues().real();
std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl;
eigen_list.push_back(eigenvalue.maxCoeff());
eigen_list.push_back(1.22);
eigen_list.push_back(-54.21);
eigen_list.push_back(8.44);
eigen_list.push_back(-27.83);
eigen_list.push_back(33.12);
//eigen_list.push_back(40.29);
std::cout << "eigen_list: ";
for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it)
std::cout << *it << " ";
std::cout << std::endl;
int num1 = eigen_list.size();
MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1);
VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose();
VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose();
double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff());
VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff());
double tri_threshold = eigen_a5.mean();
std::cout << "tri_threshold: " << tri_threshold << std::endl;
return 0;
}
阅读全文