pytorch rnn 股票预测
时间: 2023-10-29 21:05:30 浏览: 242
使用PyTorch中的RNN模型进行股票预测可以分为以下几个步骤:
1. 数据预处理:将原始股票数据进行归一化处理,划分训练集和测试集,并将数据转换为PyTorch中的Tensor格式。
2. 构建RNN模型:使用PyTorch中的nn.RNN模块构建RNN模型,并定义损失函数和优化器。
3. 训练模型:使用训练集对RNN模型进行训练,并记录训练过程中的损失值。
4. 模型预测:使用测试集对训练好的RNN模型进行预测,并计算预测结果与真实值之间的误差。
以下是一个简单的PyTorch RNN股票预测代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 数据预处理
data = pd.read_csv('stock_data.csv')
scaler = MinMaxScaler()
data['Close'] = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
train_data = data.iloc[:200, :]
test_data = data.iloc[200:, :]
train_x = torch.Tensor(train_data['Close'].values[:-1]).view(-1, 1, 1)
train_y = torch.Tensor(train_data['Close'].values[1:]).view(-1, 1, 1)
test_x = torch.Tensor(test_data['Close'].values[:-1]).view(-1, 1, 1)
test_y = torch.Tensor(test_data['Close'].values[1:]).view(-1, 1, 1)
# 构建RNN模型
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out
model = RNN(1, 32, 1)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(100):
optimizer.zero_grad()
output = model(train_x)
loss = criterion(output, train_y)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item()))
# 模型预测
with torch.no_grad():
test_output = model(test_x)
test_loss = criterion(test_output, test_y)
print('Test Loss: {:.4f}'.format(test_loss.item()))
test_output = scaler.inverse_transform(test_output.numpy().reshape(-1, 1))
test_y = scaler.inverse_transform(test_y.numpy().reshape(-1, 1))
print('Predicted Close price:', test_output)
print('True Close price:', test_y)
```
阅读全文