pytorch的RNN房价预测代码
时间: 2024-04-18 09:22:54 浏览: 163
基于Python的房价预测项目【100010964】
当使用PyTorch进行RNN(循环神经网络)的房价预测时,可以按照以下步骤进行:
1. 导入所需的库和模块:
```python
import torch
import torch.nn as nn
import numpy as np
```
2. 准备数据集:
```python
# 假设我们有一个房价数据集,包含了房屋面积和对应的价格
# 这里只是一个示例,实际情况中需要根据数据集的格式进行处理
data = np.array([[100, 300], [150, 450], [200, 600], [250, 750], [300, 900]], dtype=np.float32)
x_train = data[:, 0] # 输入特征,房屋面积
y_train = data[:, 1] # 输出标签,房价
```
3. 数据预处理:
```python
# 归一化数据,将输入特征和输出标签都缩放到0-1之间
x_train = (x_train - np.min(x_train)) / (np.max(x_train) - np.min(x_train))
y_train = (y_train - np.min(y_train)) / (np.max(y_train) - np.min(y_train))
# 将数据转换为PyTorch张量
x_train = torch.from_numpy(x_train).unsqueeze(1)
y_train = torch.from_numpy(y_train).unsqueeze(1)
```
4. 定义RNN模型:
```python
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out
# 定义模型参数
input_size = 1 # 输入特征的维度
hidden_size = 32 # 隐藏层的大小
output_size = 1 # 输出标签的维度
# 创建RNN模型实例
model = RNN(input_size, hidden_size, output_size)
```
5. 定义损失函数和优化器:
```python
criterion = nn.MSELoss() # 使用均方误差作为损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 使用Adam优化器进行参数更新
```
6. 训练模型:
```python
num_epochs = 1000 # 训练轮数
for epoch in range(num_epochs):
outputs = model(x_train)
loss = criterion(outputs, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
7. 使用模型进行预测:
```python
# 假设我们有一个新的房屋面积为250的样本,希望预测其价格
x_test = torch.tensor([[250]], dtype=torch.float32)
x_test = (x_test - np.min(x_train)) / (np.max(x_train) - np.min(x_train)) # 归一化输入数据
y_pred = model(x_test.unsqueeze(0))
y_pred = y_pred * (np.max(y_train) - np.min(y_train)) + np.min(y_train) # 反归一化输出数据
print('预测的房价为: {:.2f}'.format(y_pred.item()))
```
阅读全文