用mindspore实现mnist感知器
时间: 2023-05-11 09:01:28 浏览: 186
MindSpore是华为公司最新开源的深度学习框架,具有高效、灵活、跨平台等特点,适合实现各类深度学习模型。Mnist感知器是入门级别的机器学习模型之一,该模型可以通过MindSpore来实现。
首先,需要导入必要的包和库:
```python
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.common.initializer import Normal
from mindspore.train.serialization import save_checkpoint, load_checkpoint
from mindspore import Parameter
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
```
其次,需要定义Mnist感知器的类:
```python
class MnistPerceptron(nn.Cell):
def __init__(self, weight_init='normal', bias_init='zeros'):
super(MnistPerceptron, self).__init__()
self.weight = Parameter(
weight_init(1, 784), name='weight')
self.bias = Parameter(
bias_init(1), name='bias')
self.matmul = nn.MatMul()
self.add = nn.TensorAdd()
self.relu = nn.ReLU()
def construct(self, x):
output = self.matmul(x, self.weight)
output = self.add(output, self.bias)
output = self.relu(output)
return output
```
其中weight和bias参数分别是特征和偏差的系数,matmul、add和relu是Mnist感知器中的三个基本操作。
接着,需要训练数据和测试数据进行训练:
```python
train_X, train_y = make_classification(
n_samples=500, n_features=784, n_classes=10)
train_data = Tensor(train_X, mindspore.float32)
train_label = Tensor(train_y, mindspore.int32)
test_X, test_y = make_classification(
n_samples=200, n_features=784, n_classes=10)
test_data = Tensor(test_X, mindspore.float32)
test_label = Tensor(test_y, mindspore.int32)
```
数据加载完毕后,需要定义优化器和损失函数:
```python
weight_init = Normal(0.02)
bias_init = Normal(0.02)
net = MnistPerceptron(weight_init, bias_init)
lr = 0.01
momentum = 0.9
optimizer = nn.Momentum(net.trainable_params(), lr, momentum)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
```
然后,可以开始模型的训练了:
```python
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
loss_list = []
net.set_train()
for i in range(500):
optimizer.clear_grad()
output = net(train_data)
loss = loss_fn(output, train_label)
loss_list.append(loss.asnumpy())
loss.backward()
optimizer.step()
```
最后,可以使用测试数据对模型进行验证:
```python
net.set_eval()
correct = 0
total = test_data.shape[0]
output = net(test_data)
output = nn.Softmax()(output)
pred_value = output.argmax(axis=1).asnumpy()
for i in range(total):
if pred_value[i] == test_y[i]:
correct += 1
print("Accuracy: {}".format(correct / total))
```
Mnist感知器的实现过程就是这样,我们使用MindSpore框架对其进行了实现和训练。
阅读全文