主机发送:0x3A 0x16 0x01 0x01 0x04 0x1C 0x00 0x0D 0x0A 0x3A,为起始标识,单字节,为固定值; 0x16,为地址标识,单字节,代表电池组地址编码,为固定值; 0x01,为通讯命令,单字节,0x01代表LED灯控制; 0x01,为数据长度,单字节,代表该通讯数据帧内数据缓冲区内的数据长度; 0x04,为数据内容,多字节,代表数据区内容,stm32根据接收到的主机数据内容控制对应的led进行亮灭操作;0x04代表控制led3亮; 0x1C, 0x00,为累加校验和,两字节,低字节为0x1C, 高字节为0x00 。累加校验和的具体的计算公式为 0x16+0x01+0x01+0x04 =0x001C (十六进制); 0x0D 0x0A,分别为结束标识 1 和结束标识 2,两字节,为固定值;

时间: 2023-04-05 08:01:21 浏览: 108
这是一个关于通讯协议的问题,根据给出的数据内容,stm32可以根据接收到的主机数据内容控制对应的led进行亮灭操作,其中0x04代表控制led3亮。累加校验和的具体的计算公式为0x16 0x01 0x01 0x04 =0x001C(十六进制)。结束标识分别为0x0D和0x0A,为固定值。
相关问题

用汇编语言编程给 SRAM 内存中$0150 开始的连续 100 个字节单元分别赋如下 初值: $01、$02、$03、$04.......$63、$64。

下面是一段MIPS汇编代码的示例,用于将SRAM内存中$0150开始的连续100个字节单元分别赋初值: ```mips .data start: .byte 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A .byte 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14 .byte 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E .byte 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28 .byte 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32 .byte 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C .byte 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46 .byte 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50 .byte 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A .byte 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63, 0x64 .text .globl main main: lui $t0, 0x0015 # 将0x0015存入$t0的高16位 ori $t0, $t0, 0x0000 # 将0x0000存入$t0的低16位 li $t1, 0 # 初始化计数器$t1为0 loop: lb $t2, start($t1) # 从start地址开始读取1个字节赋值给$t2 sb $t2, ($t0) # 将$t2的值存入$t0所指向的内存 addi $t1, $t1, 1 # 计数器$t1加1 addi $t0, $t0, 1 # $t0指向下一个内存单元 bne $t1, 100, loop # 如果计数器$t1不等于100,跳转到loop标签处 jr $ra # 返回主函数结束程序 ``` 在这段代码中,我们首先使用`.data`伪指令来定义了100个字节的数组`start`,并将需要赋的初值以16进制的形式逐个存储在数组中。接着,我们使用`.text`伪指令定义了`main`函数,其中使用了`lui`和`ori`指令将0x0150存入了寄存器$t0中,作为内存起始地址。然后,我们使用循环逐个读取数组中的值,并使用`sb`指令将其存入SRAM内存中对应的单元。最后,我们使用`jr`指令返回主函数,并结束程序的执行。 注意:这段代码仅供参考,实际的实现方式可能因硬件平台或编译器的不同而有所差异。

GD9F2G8F3A 4位ecc的nand_ecclayout布局并举例填充nand_ecclayout结构体

下面是基于GD9F2G8F3A的nand_ecclayout布局,填充nand_ecclayout结构体的示例代码: ```c #include <linux/mtd/mtd.h> #define NAND_PAGE_SIZE 2048 #define NAND_BLOCK_SIZE (128 * NAND_PAGE_SIZE) #define NAND_OOB_SIZE 64 struct nand_ecclayout gd9f2g8f3a_ecclayout = { .eccbytes = 4, // 每个数据页的ECC校验码字节数 .eccpos = {128, 129, 130, 131}, // 每个数据页的ECC校验码位置 .oobfree = { { .offset = 0, .length = 1 }, // 块内标记位所在的位置和长度 { .offset = 1, .length = 63 } // 用户自定义元数据信息所在的位置和长度 }, .oobused = 62, // 块内Spare页中使用的字节数(不包括块内标记位) .pagesize = NAND_PAGE_SIZE, // 页大小 .oobsize = NAND_OOB_SIZE, // 每个Spare页的字节数 .offset = 0, // 第一个数据页的偏移量(即块内数据页的起始位置) .pagemask = 0x7f, // 页地址掩码(用于计算块内页地址) .badblockspos = 0 // 坏块标记位所在位置(一般为第一个字节) }; ``` 在上面的代码中,我们填充了nand_ecclayout结构体的各个字段,按照GD9F2G8F3A的nand_ecclayout布局进行设置。其中,eccbytes表示每个数据页的ECC校验码字节数;eccpos表示每个数据页的ECC校验码位置;oobfree表示块内Spare页中可用于存储用户元数据信息的区域,其中第一个元素表示块内标记位所在的位置和长度,第二个元素表示用户自定义元数据信息所在的位置和长度;oobused表示块内Spare页中用于存储元数据信息的字节数,不包括块内标记位;pagesize和oobsize分别表示页大小和每个Spare页的字节数;offset表示第一个数据页的偏移量,即块内数据页的起始位置;pagemask表示页地址掩码,用于计算块内页地址;badblockspos表示坏块标记位所在的位置,一般为第一个字节。 通过以上示例,我们可以清楚地了解到GD9F2G8F3A的nand_ecclayout布局,并且在实际开发中可以根据该布局填充nand_ecclayout结构体。

相关推荐

最新推荐

wheel-0.13.0-py2.py3-none-any.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

三菱PLC例程源码ST反弹限位器焊机14

三菱PLC例程源码ST反弹限位器焊机14本资源系百度网盘分享地址

asp代码asp教师信息管理系统(源代码+论文)

asp代码asp教师信息管理系统(源代码+论文)本资源系百度网盘分享地址

tensorflow_serving_api_gpu-2.3.3-py2.py3-none-any.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

tensorflow_serving_api-2.0.0-py2.py3-none-any.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

ExcelVBA中的Range和Cells用法说明.pdf

ExcelVBA中的Range和Cells用法是非常重要的,Range对象可以用来表示Excel中的单元格、单元格区域、行、列或者多个区域的集合。它可以实现对单元格内容的赋值、取值、复制、粘贴等操作。而Cells对象则表示Excel中的单个单元格,通过指定行号和列号来操作相应的单元格。 在使用Range对象时,我们需要指定所操作的单元格或单元格区域的具体位置,可以通过指定工作表、行号、列号或者具体的单元格地址来实现。例如,可以通过Worksheets("Sheet1").Range("A5")来表示工作表Sheet1中的第五行第一列的单元格。然后可以通过对该单元格的Value属性进行赋值,实现给单元格赋值的操作。例如,可以通过Worksheets("Sheet1").Range("A5").Value = 22来讲22赋值给工作表Sheet1中的第五行第一列的单元格。 除了赋值操作,Range对象还可以实现其他操作,比如取值、复制、粘贴等。通过获取单元格的Value属性,可以取得该单元格的值。可以通过Range对象的Copy和Paste方法实现单元格内容的复制和粘贴。例如,可以通过Worksheets("Sheet1").Range("A5").Copy和Worksheets("Sheet1").Range("B5").Paste来实现将单元格A5的内容复制到单元格B5。 Range对象还有很多其他属性和方法可供使用,比如Merge方法可以合并单元格、Interior属性可以设置单元格的背景颜色和字体颜色等。通过灵活运用Range对象的各种属性和方法,可以实现丰富多样的操作,提高VBA代码的效率和灵活性。 在处理大量数据时,Range对象的应用尤为重要。通过遍历整个单元格区域来实现对数据的批量处理,可以极大地提高代码的运行效率。同时,Range对象还可以多次使用,可以在多个工作表之间进行数据的复制、粘贴等操作,提高了代码的复用性。 另外,Cells对象也是一个非常实用的对象,通过指定行号和列号来操作单元格,可以简化对单元格的定位过程。通过Cells对象,可以快速准确地定位到需要操作的单元格,实现对数据的快速处理。 总的来说,Range和Cells对象在ExcelVBA中的应用非常广泛,可以实现对Excel工作表中各种数据的处理和操作。通过灵活使用Range对象的各种属性和方法,可以实现对单元格内容的赋值、取值、复制、粘贴等操作,提高代码的效率和灵活性。同时,通过Cells对象的使用,可以快速定位到需要操作的单元格,简化代码的编写过程。因此,深入了解和熟练掌握Range和Cells对象的用法对于提高ExcelVBA编程水平是非常重要的。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

C++中的数据库连接与操作技术

# 1. 数据库连接基础 数据库连接是在各种软件开发项目中常见的操作,它是连接应用程序与数据库之间的桥梁,负责传递数据与指令。在C++中,数据库连接的实现有多种方式,针对不同的需求和数据库类型有不同的选择。在本章中,我们将深入探讨数据库连接的概念、重要性以及在C++中常用的数据库连接方式。同时,我们也会介绍配置数据库连接的环境要求,帮助读者更好地理解和应用数据库连接技术。 # 2. 数据库操作流程 数据库操作是C++程序中常见的任务之一,通过数据库操作可以实现对数据库的增删改查等操作。在本章中,我们将介绍数据库操作的基本流程、C++中执行SQL查询语句的方法以及常见的异常处理技巧。让我们

unity中如何使用代码实现随机生成三个不相同的整数

你可以使用以下代码在Unity中生成三个不同的随机整数: ```csharp using System.Collections.Generic; public class RandomNumbers : MonoBehaviour { public int minNumber = 1; public int maxNumber = 10; private List<int> generatedNumbers = new List<int>(); void Start() { GenerateRandomNumbers();

基于单片机的电梯控制模型设计.doc

基于单片机的电梯控制模型设计是一项旨在完成课程设计的重要教学环节。通过使用Proteus软件与Keil软件进行整合,构建单片机虚拟实验平台,学生可以在PC上自行搭建硬件电路,并完成电路分析、系统调试和输出显示的硬件设计部分。同时,在Keil软件中编写程序,进行编译和仿真,完成系统的软件设计部分。最终,在PC上展示系统的运行效果。通过这种设计方式,学生可以通过仿真系统节约开发时间和成本,同时具有灵活性和可扩展性。 这种基于单片机的电梯控制模型设计有利于促进课程和教学改革,更有利于学生人才的培养。从经济性、可移植性、可推广性的角度来看,建立这样的课程设计平台具有非常重要的意义。通过仿真系统,学生可以在实际操作之前完成系统设计和调试工作,提高了实验效率和准确性。最终,通过Proteus设计PCB,并完成真正硬件的调试。这种设计方案可以为学生提供实践操作的机会,帮助他们更好地理解电梯控制系统的原理和实践应用。 在设计方案介绍中,指出了在工业领域中,通常采用可编程控制器或微型计算机实现电梯逻辑控制,虽然可编程控制器有较强的抗干扰性,但价格昂贵且针对性强。而通过单片机控制中心,可以针对不同楼层分别进行合理调度,实现电梯控制的模拟。设计中使用按键用于用户发出服务请求,LED用于显示电梯状态。通过这种设计方案,学生可以了解电梯控制系统的基本原理和实现方法,培养他们的实践操作能力和创新思维。 总的来说,基于单片机的电梯控制模型设计是一项具有重要意义的课程设计项目。通过Proteus软件与Keil软件的整合,搭建单片机虚拟实验平台,可以帮助学生更好地理解电梯控制系统的原理和实践应用,培养他们的实践操作能力和创新思维。这种设计方案不仅有利于课程和教学改革,也对学生的人才培养具有积极的促进作用。通过这样的设计方案,学生可以在未来的工作中更好地应用所学知识,为电梯控制系统的研发和应用做出贡献。