def main(args): # load and preprocess dataset if args.dataset == 'reddit': data = RedditDataset() elif args.dataset in ['photo', "computer"]: data = MsDataset(args) else: data = load_data(args) features = torch.FloatTensor(data.features) #将数据集中的特征数据转换为PyTorch中的FloatTensor类型。 labels = torch.LongTensor(data.labels) #假设 data.labels 是一个包含类别标签的列表,那么这段代码将其转换为一个 PyTorch 的 LongTensor 张量 train_mask = torch.ByteTensor(data.train_mask) val_mask = torch.ByteTensor(data.val_mask) test_mask = torch.ByteTensor(data.test_mask) num_feats = features.shape[1] #获取特征的数量,并将其赋值给变量num_feats. n_classes = data.num_labels #指定分类类别数量. n_edges = data.graph.number_of_edges() #边的数量 current_time = time.strftime('%d_%H:%M:%S', localtime()) writer = SummaryWriter(log_dir='runs/' + current_time + '_' + args.sess, flush_secs=30)
时间: 2024-04-28 11:23:08 浏览: 168
java day005 main入口函数中的String[] args 是什么??.md
这段代码是 `main()` 函数的一部分,它主要完成了数据集的加载和预处理的工作,并且创建了一个 TensorBoard 的可视化实例用于记录模型训练过程。
首先,根据命令行参数 `args.dataset` 的不同值,选择不同的数据集进行加载。如果 `args.dataset` 的值是 'reddit',则会加载 Reddit 数据集,否则会通过 `load_data()` 函数加载指定的数据集。如果 `args.dataset` 的值是 'photo' 或 'computer',则会使用 `MsDataset` 类加载 Microsoft 数据集。
接着,将加载的数据集中的特征数据、标签、训练集、验证集和测试集的掩码转换为 PyTorch 中的 Tensor 类型(分别为 `torch.FloatTensor` 和 `torch.ByteTensor`)。其中,`features` 是一个 `n` 行 `d` 列的矩阵,表示有 `n` 个节点,每个节点有 `d` 维的特征;`labels` 是一个长度为 `n` 的向量,表示每个节点的标签;`train_mask`、`val_mask` 和 `test_mask` 是长度为 `n` 的布尔向量,用于指示每个节点是否属于训练集、验证集或测试集。
然后,根据特征矩阵的形状获取特征的数量,并将其赋值给变量 `num_feats`。同时,根据数据集对象的 `num_labels` 属性获取分类类别数量,并将其赋值给变量 `n_classes`。将数据集对象的 `graph` 属性中存储的图数据中边的数量赋值给变量 `n_edges`。
最后,根据当前时间和命令行参数 `args.sess` 的值创建一个 TensorBoard 的可视化实例,并将其记录在目录 `runs/` 下,用于记录模型训练过程。`flush_secs` 参数表示每隔多少秒将缓冲区的数据写入磁盘一次。
阅读全文