def load_dataset(text_field, label_field, args, **kwargs): train_dataset, dev_dataset = dataset.get_dataset('data', text_field, label_field) if args.static and args.pretrained_name and args.pretrained_path: vectors = load_word_vectors(args.pretrained_name, args.pretrained_path) text_field.build_vocab(train_dataset, dev_dataset, vectors=vectors) else: text_field.build_vocab(train_dataset, dev_dataset) label_field.build_vocab(train_dataset, dev_dataset) train_iter, dev_iter = data.Iterator.splits( (train_dataset, dev_dataset), batch_sizes=(args.batch_size, len(dev_dataset)), sort_key=lambda x: len(x.text), **kwargs) return train_iter, dev_iter

时间: 2024-01-26 07:04:14 浏览: 28
这段代码定义了一个函数`load_dataset`,用于加载和处理数据集。 函数的输入包括`text_field`和`label_field`,它们是用于定义文本字段和标签字段的对象。`args`是包含一些参数的对象。`**kwargs`则用于接收其他可选参数。 函数首先调用`dataset.get_dataset`方法来获取训练集和验证集。然后,根据参数`args.static`、`args.pretrained_name`和`args.pretrained_path`来判断是否使用预训练的词向量。如果需要使用预训练的词向量,则调用`load_word_vectors`方法加载预训练模型,并通过`text_field.build_vocab`方法将其应用到训练集和验证集上。否则,只通过`text_field.build_vocab`方法构建词汇表。 接下来,使用`label_field.build_vocab`方法构建标签的词汇表。 最后,通过调用`data.Iterator.splits`方法创建训练集和验证集的迭代器。迭代器会按照指定的批量大小(`args.batch_size`)和排序键(`sort_key=lambda x: len(x.text)`)对数据进行划分和排序。 最后,函数返回训练集和验证集的迭代器。 这段代码适用于使用PyTorch进行文本分类等任务时的数据加载和处理过程。希望对你有所帮助。如果还有其他问题,请随时提问。
相关问题

val_dataset = get_segmentation_dataset(args.dataset, split='val', mode='val', **data_kwargs) args.iters_per_epoch = len(train_dataset) // (args.num_gpus * args.batch_size) args.max_iters = args.epochs * args.iters_per_epoch

这段代码用于获取验证数据集(val_dataset)。它调用了一个名为`get_segmentation_dataset`的函数,并传递了一些参数,包括`args.dataset`,`split='val'`,`mode='val'`,以及`**data_kwargs`。 `args.dataset`是一个参数,用于指定数据集的名称或路径。`split='val'`表示获取验证集的数据。`mode='val'`表示模式为验证模式。 `**data_kwargs`表示将之前提到的参数字典`data_kwargs`解包,并作为关键字参数传递给`get_segmentation_dataset`函数。 通过调用这个函数,可以获取到一个验证数据集对象,可以在验证过程中使用。 接下来的代码中,通过计算训练数据集的长度(len(train_dataset))以及一些其他参数(args.num_gpus和args.batch_size),来计算每个epoch中的迭代次数(args.iters_per_epoch)。然后,通过将每个epoch中的迭代次数(args.iters_per_epoch)与总的epoch数(args.epochs)相乘,得到最大迭代次数(args.max_iters)。这些值在训练过程中可能会用到。

train_dataset = get_segmentation_dataset(args.dataset, split='train', mode='train', **data_kwargs)

这段代码是用于获取训练数据集的。它调用了一个名为`get_segmentation_dataset`的函数,并传递了一些参数,包括`args.dataset`,`split='train'`,`mode='train'`,以及`**data_kwargs`。 `args.dataset`是一个参数,用于指定数据集的名称或路径。`split='train'`表示获取训练集的数据。`mode='train'`表示模式为训练模式。 `**data_kwargs`表示将前面提到的参数字典`data_kwargs`解包,并作为关键字参数传递给`get_segmentation_dataset`函数。 通过调用这个函数,可以获取到一个训练数据集对象,可以在数据加载器中使用。

相关推荐

Traceback (most recent call last): File "d:/Python/ultralytics-main/val.py", line 8, in <module> metrics = model.val() # no arguments needed, dataset and settings remembered File "D:\Application\Anaconda\envs\test\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 302, in val validator(model=self.model) File "D:\Application\Anaconda\envs\test\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\validator.py", line 127, in __call__ self.data = check_det_dataset(self.args.data) File "d:\Python\ultralytics-main\ultralytics\yolo\data\utils.py", line 195, in check_det_dataset data = check_file(dataset) File "d:\Python\ultralytics-main\ultralytics\yolo\utils\checks.py", line 292, in check_file raise FileNotFoundError(f"'{file}' does not exist") FileNotFoundError: '/root/autodl-tmp/ultralytics-main/traindata3/data.yaml' does not exist (test) PS D:\Python\ultralytics-main> & D:/Application/Anaconda/envs/test/python.exe d:/Python/ultralytics-main/val.py Ultralytics YOLOv8.0.105 Python-3.8.0 torch-1.13.1+cu116 CUDA:0 (NVIDIA GeForce GTX 1660 Ti with Max-Q Design, 6144MiB) YOLOv8s summary (fused): 168 layers, 11132550 parameters, 0 gradients, 28.5 GFLOPs Traceback (most recent call last): File "d:/Python/ultralytics-main/val.py", line 8, in <module> metrics = model.val() # no arguments needed, dataset and settings remembered File "D:\Application\Anaconda\envs\test\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 302, in val validator(model=self.model) File "D:\Application\Anaconda\envs\test\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\validator.py", line 127, in __call__ self.data = check_det_dataset(self.args.data) File "d:\Python\ultralytics-main\ultralytics\yolo\data\utils.py", line 195, in check_det_dataset data = check_file(dataset) File "d:\Python\ultralytics-main\ultralytics\yolo\utils\checks.py", line 292, in check_file raise FileNotFoundError(f"'{file}' does not exist") FileNotFoundError: '/root/autodl-tmp/ultralytics-main/traindata3/data.yaml' does not exist

分析错误信息D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3484.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Model Summary: 283 layers, 7063542 parameters, 7063542 gradients, 16.5 GFLOPS Transferred 354/362 items from F:\Desktop\yolov5-5.0\weights\yolov5s.pt Scaled weight_decay = 0.0005 Optimizer groups: 62 .bias, 62 conv.weight, 59 other Traceback (most recent call last): File "F:\Desktop\yolov5-5.0\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "F:\Desktop\yolov5-5.0\train.py", line 189, in train dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 63, in create_dataloader dataset = LoadImagesAndLabels(path, imgsz, batch_size, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 385, in __init__ cache, exists = torch.load(cache_path), True # load File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 815, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 1033, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: STACK_GLOBAL requires str Process finished with exit code 1

最新推荐

recommend-type

Python_从合成数据代码和模型中学习.zip

Python_从合成数据代码和模型中学习
recommend-type

基于Javascript的enroll微信小程序报名设计源码

本项目是基于Javascript的enroll微信小程序报名设计源码,包含35个文件,其中包括8个JSON文件、7个JavaScript文件、6个WXSS文件、5个WXML文件、3个JPG图片文件、3个PNG图片文件、1个Gitignore文件、1个Markdown文件和1个ICO文件。这个项目是一个微信小程序报名设计,旨在通过Javascript和微信小程序技术栈实现,为用户提供便捷的报名服务。
recommend-type

ALINX黑金AX7020 PYNQ3.0.1镜像

编译好的黑金AX7020 PYNQ3.0.1镜像,功能已验证。 芯片ZYNQ7020,具体型号xc7z070clg400-2 受网盘单文件大小限制,使用分卷压缩的方式上传 注意!请自行下载所有的分卷后再解压
recommend-type

lol r3nzskin

lol skin move it to lol gamed dir
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依