解释:[D_sort, idx] = sort(diag(D), 'descend');
时间: 2023-12-23 20:04:09 浏览: 245
这段代码是对特征值矩阵D进行降序排列,返回排列后的特征值和对应的索引。
具体解释如下:
- diag:MATLAB中的函数,可以返回矩阵的对角线元素向量。
- D:特征值矩阵,对角线上的元素是特征值。
- sort:MATLAB中的排序函数,可以对向量、矩阵等进行排序。
- 'descend':降序排列的方式。
- D_sort:排列后的特征值向量。
- idx:排列后的特征值在原特征值矩阵D中的索引向量。
相关问题
解释:[D_sort, idx] = sort(diag(D), 'descend');%抽取对角线特征值并排序 V_sort = V(:, idx); V_new = V_sort(:, 1:nu); W = data_zero_mean * V_new;
这段代码是基于特征值分解的PCA降维算法的实现。
首先,对特征值矩阵D进行对角线提取,得到特征值向量D_sort,并对其进行降序排列,同时记录特征值在原特征值矩阵D中的位置,得到索引向量idx。
然后,将特征向量矩阵V按照D_sort排列,得到排列后的特征向量矩阵V_sort,并选取前nu个特征向量,得到新的特征向量矩阵V_new。
最后,将原始数据矩阵data_zero_mean乘以新的特征向量矩阵V_new,得到降维后的数据矩阵W。
具体解释如下:
- V:特征向量矩阵,每一列是一个特征向量。
- D:特征值矩阵,对角线上的元素是特征值。
- diag:MATLAB中的函数,可以返回矩阵的对角线元素向量。
- sort:MATLAB中的排序函数,可以对向量、矩阵等进行排序。
- 'descend':降序排列的方式。
- D_sort:排列后的特征值向量。
- idx:排列后的特征值在原特征值矩阵D中的索引向量。
- V_sort:排列后的特征向量矩阵。
- nu:需要保留的主成分个数。
- V_new:选取前nu个特征向量得到的新的特征向量矩阵。
- data_zero_mean:零均值化后的数据矩阵。
- W:降维后的数据矩阵。
function [train_pca,test_pca,dataset_cumsum,percent_explained] = pcaForRF(train,test,threshold)
% This function performs PCA on the training dataset and applies the same
% transformation to the testing dataset. It returns the transformed
% datasets, cumulative sum of variance explained by each principal
% component, and the percentage of variance explained by each principal
% component.
%
% Inputs:
% train - Training dataset with observations in rows and features in
% columns.
% test - Testing dataset with observations in rows and features in columns.
% The number of columns must match the number of columns in the
% training dataset.
% threshold - A threshold value (between 0 and 1) that determines the
% number of principal components to keep. The function will
% keep the minimum number of principal components required
% to explain the threshold fraction of the variance in the
% dataset.
%
% Outputs:
% train_pca - Transformed training dataset.
% test_pca - Transformed testing dataset.
% dataset_cumsum - Cumulative sum of variance explained by each principal
% component.
% percent_explained - Percentage of variance explained by each principal
% component.
% Compute mean and standard deviation of training data
train_mean = mean(train);
train_std = std(train);
% Standardize the training and testing data
train_stdz = (train - train_mean) ./ train_std;
test_stdz = (test - train_mean) ./ train_std;
% Compute covariance matrix of the standardized training data
cov_matrix = cov(train_stdz);
% Compute eigenvectors and eigenvalues of the covariance matrix
[eig_vectors, eig_values] = eig(cov_matrix);
% Sort the eigenvectors in descending order of eigenvalues
[eig_values, idx] = sort(diag(eig_values), 'descend');
eig_vectors = eig_vectors(:, idx);
% Compute cumulative sum of variance explained by each principal component
variance_explained = eig_values / sum(eig_values);
dataset_cumsum = cumsum(variance_explained);
% Compute number of principal components required to explain the threshold
% fraction of the variance in the dataset
num_components = find(dataset_cumsum >= threshold, 1, 'first');
% Compute percentage of variance explained by each principal component
percent_explained = variance_explained * 100;
% Transform the standardized training and testing data using the
% eigenvectors
train_pca = train_stdz * eig_vectors(:, 1:num_components);
test_pca = test_stdz * eig_vectors(:, 1:num_components);
阅读全文
相关推荐
















