用matlab做一个强化学习的例子
时间: 2024-05-24 07:04:44 浏览: 149
好的,以下是一个用MATLAB实现的简单强化学习示例代码:
首先,我们需要定义一个强化学习环境。这里我们使用经典的CartPole问题,目标是让一个杆子在小车上保持平衡。具体来说,我们需要定义状态空间、动作空间、奖励函数以及状态转移函数。
```matlab
classdef CartPole < rl.env.MATLABEnvironment
properties
% Environment (simulated world) parameters
Gravity = 9.8
CartMass = 1.0
PoleMass = 0.1
PoleLength = 0.5
MaxForce = 10.0
Ts = 0.02
% State variables
X
XDot
Theta
ThetaDot
end
properties (Access = protected)
% Action space
ActionInfo = rlNumericSpec([1 1], 'LowerLimit', -1, 'UpperLimit', 1)
% State space
ObservationInfo = rlNumericSpec([4 1], 'LowerLimit', [-Inf -Inf -Inf -Inf]', 'UpperLimit', [Inf Inf Inf Inf]')
end
methods
function this = CartPole()
% Initialize environment
this.X = 0;
this.XDot = 0;
this.Theta = 0;
this.ThetaDot = 0;
% Set reward range
this.RewardRange = [-1 1];
end
function [Observation, Reward, IsDone, LoggedSignals] = step(this, Action)
% Apply action to environment and simulate one step
Force = this.MaxForce * Action;
CosTheta = cos(this.Theta);
SinTheta = sin(this.Theta);
Temp = (Force + this.PoleMass * this.PoleLength * this.ThetaDot^2 * SinTheta) / (this.CartMass + this.PoleMass);
ThetaAcc = (this.Gravity * SinTheta - CosTheta * Temp) / (this.PoleLength * (4/3 - this.PoleMass * CosTheta^2 / (this.CartMass + this.PoleMass)));
XAcc = Temp - this.PoleMass * this.PoleLength * ThetaAcc * CosTheta / (this.CartMass + this.PoleMass);
this.XDot = this.XDot + this.Ts * XAcc;
this.X = this.X + this.Ts * this.XDot;
this.ThetaDot = this.ThetaDot + this.Ts * ThetaAcc;
this.Theta = this.Theta + this.Ts * this.ThetaDot;
Observation = this.getObservation();
% Calculate reward
PoleAngleCos = cos(this.Theta);
Reward = 1 - abs(PoleAngleCos);
IsDone = abs(this.Theta) > pi/2 || abs(this.X) > 2.4;
% Log signals
LoggedSignals.CartPosition = this.X;
LoggedSignals.PoleAngle = this.Theta;
end
function InitialObservation = reset(this)
% Reset environment to initial state
this.X = (rand() - 0.5) * 0.2;
this.XDot = (rand() - 0.5) * 0.5;
this.Theta = (rand() - 0.5) * pi/10;
this.ThetaDot = (rand() - 0.5) * 0.5;
InitialObservation = this.getObservation();
end
function Observation = getObservation(this)
% Return current observation
Observation = [this.X; this.XDot; this.Theta; this.ThetaDot];
end
end
end
```
接下来,我们定义一个强化学习智能体。这里我们使用了一种简单的Q-Learning算法,以更新价值函数并选择动作。
```matlab
classdef QLearningAgent < rl.agent.AbstractAgent
properties
% Q-Learning hyperparameters
Epsilon = 0.1
Gamma = 0.99
Alpha = 0.5
% State and action spaces
StateInfo
ActionInfo
% Q-Learning table
QTable
end
methods
function this = QLearningAgent(StateInfo, ActionInfo)
% Initialize agent
this.StateInfo = StateInfo;
this.ActionInfo = ActionInfo;
this.QTable = rlTable(getObservationInfo(StateInfo), getActionInfo(ActionInfo));
end
function Action = getAction(this, Observation)
% Choose action based on epsilon-greedy policy
if rand() < this.Epsilon
Action = randAction(this.ActionInfo);
else
Action = getAction(this.QTable, Observation);
end
end
function [Action, State] = getActionWithState(this, Observation)
% Choose action and return internal state
Action = this.getAction(Observation);
State = [];
end
function learn(this, Experience)
% Update Q-Learning table based on experience
State = Experience{1};
Action = Experience{2};
Reward = Experience{3};
NextState = Experience{4};
IsTerminal = Experience{5};
Target = Reward + ~IsTerminal * this.Gamma * max(getQValues(this.QTable, NextState));
update(this.QTable, State, Action, this.Alpha * (Target - getQValue(this.QTable, State, Action)));
end
end
end
```
接下来,我们可以将环境和智能体传递给一个强化学习训练器,并开始训练。
```matlab
env = CartPole();
agent = QLearningAgent(env.getObservationInfo(), env.getActionInfo());
trainOpts = rlTrainingOptions(...
'MaxEpisodes', 1000, ...
'MaxStepsPerEpisode', 500, ...
'Verbose', false);
trainStats = train(agent, env, trainOpts);
```
最后,我们可以使用训练好的智能体进行测试。
```matlab
env.reset();
cumulativeReward = 0;
while true
action = agent.getAction(env.getObservation());
[observation, reward, done, info] = env.step(action);
cumulativeReward = cumulativeReward + reward;
if done
break;
end
end
fprintf('Test cumulative reward: %f\n', cumulativeReward);
```
这就是一个简单的用MATLAB实现的强化学习示例。当然,这只是一个非常基础的例子,实际的应用中会涉及到更加复杂的环境和智能体设计。
阅读全文