def print_(x): if type(x) == float: print("%.4f" % x) else: print(x) # *****
时间: 2023-10-15 16:01:19 浏览: 133
这段代码定义了一个名为print_的函数,函数的参数是x。
函数内部使用if语句判断x的类型是否为浮点数。如果是浮点数,就使用print函数和格式化字符串"%.4f"将x四舍五入保留四位小数后打印出来。如果不是浮点数,则直接使用print函数将x打印出来。
这个函数的作用是根据x的类型打印不同的内容。如果x是浮点数,则打印出x四舍五入保留四位小数后的值。如果x不是浮点数,则直接打印出x的值。
要注意的是,这个函数没有返回值,只是在控制台输出结果。所以在调用这个函数时,函数内部的代码会被执行,但是整个函数的返回值为None。
相关问题
import pandas as pd import networkx as nx import os from multiprocessing import Pool def process_csv(csv_path): df = pd.read_csv(csv_path, header=None, names=['source', 'target', 'weight'], delim_whitespace=True) G = nx.Graph() for index, row in df.iterrows(): G.add_edge(row['source'], row['target'], weight=row['weight']) dist_matrix = dict(nx.all_pairs_dijkstra_path_length(G)) with open(os.path.splitext(csv_path)[0] + '.txt', 'w') as f: sum=0 for source in dist_matrix: for target in dist_matrix[source]: if source < target: Str = "from: " + str(source) + " to: " + str(target) + " shortest_path_length: {:.2f}".format(dist_matrix[source][target]) f.write(Str + '\n') sum+=1/dist_matrix[source][target] N = G.number_of_nodes() ret='E(G)='+str(sum/(N*(N-1))) print(ret) f.write(ret + '\n') if __name__ == '__main__': folder_path = r'D:\2012POI\大连市2012_网络' csv_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.csv')] pool = Pool() pool.map(process_csv, csv_files) pool.close() pool.join(),帮我解决结果出现E(G)=inf的问题,并给出完整代码
这个问题可能是因为在计算 E(G) 时,某些节点之间的最短路径长度为 0。这可能是因为在 csv 文件中存在自环,即源节点和目标节点是同一个节点,或者两个节点之间没有边连接。
可以通过在计算 E(G) 之前先检查图中是否有自环或孤立节点来解决这个问题。如果出现这些情况,可以通过删除自环或孤立节点来处理。
以下是修改后的代码,包括检查自环和孤立节点的代码:
```python
import pandas as pd
import networkx as nx
import os
from multiprocessing import Pool
def process_csv(csv_path):
df = pd.read_csv(csv_path, header=None, names=['source', 'target', 'weight'], delim_whitespace=True)
# Remove self-loops and isolated nodes
df = df[df['source'] != df['target']]
nodes = set(df['source']) | set(df['target'])
G = nx.Graph()
G.add_nodes_from(nodes)
for index, row in df.iterrows():
G.add_edge(row['source'], row['target'], weight=row['weight'])
dist_matrix = dict(nx.all_pairs_dijkstra_path_length(G))
with open(os.path.splitext(csv_path)[0] + '.txt', 'w') as f:
sum = 0
for source in dist_matrix:
for target in dist_matrix[source]:
if source < target:
if dist_matrix[source][target] == float('inf'):
continue
Str = "from: " + str(source) + " to: " + str(target) + " shortest_path_length: {:.2f}".format(dist_matrix[source][target])
f.write(Str + '\n')
sum += 1 / dist_matrix[source][target]
N = G.number_of_nodes()
if N <= 1:
ret = 'E(G)=0'
else:
ret = 'E(G)={:.4f}'.format(sum / (N * (N - 1)))
print(ret)
f.write(ret + '\n')
if __name__ == '__main__':
folder_path = r'D:\2012POI\大连市2012_网络'
csv_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.csv')]
pool = Pool()
pool.map(process_csv, csv_files)
pool.close()
pool.join()
```
这个代码首先检查了 csv 文件中是否有自环,如果有自环就删除。然后检查了是否有孤立节点,如果有孤立节点,就在图中添加这些节点,并且不会增加 E(G)。最后,在计算 E(G) 时,跳过了最短路径长度为无穷大的节点对。
另外,修改后的代码还增加了对节点数量少于 2 的情况的处理。如果只有一个节点,则没有边,E(G) 等于 0。如果有两个节点,则只有一条边,E(G) 等于这条边的权重。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用 LDAM 损失函数训练模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss # 假设你已经将 LDAM 损失函数的代码存放在 ldam_loss.py 文件中
# 设置全局参数
model_lr = 1e-5
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
seed_everything(seed)
# 数据增强 mixup
mixup_fn = Mixup(
mixup_alpha=0.8,
cutmix_alpha=1.0,
cutmix_minmax=None,
prob=0.1,
switch_prob=0.5,
mode='batch',
label_smoothing=0.1,
num_classes=classes
)
# 加载数据集
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True
)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型和优化器
model = Net().to(DEVICE)
optimizer = optim.Adam(model.parameters(), lr=model_lr)
# 如果 resume 不为空,则从指定的 checkpoint 恢复模型和优化器
if resume is not None:
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
Best_ACC = checkpoint['Best_ACC']
print(f"Resuming from checkpoint {resume}, epoch {start_epoch}")
# 使用 LDAM 损失函数
cls_num_list = [1000] * classes
criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30).to(DEVICE)
# 训练模型
for epoch in range(start_epoch, EPOCHS + 1):
train_loss = 0
train_acc = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
data, target_a, target_b, lam = mixup_fn(data, target) # mixup 增强
optimizer.zero_grad()
output = model(data)
loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b) # 计算 mixup 后的损失函数
loss.backward()
if CLIP_GRAD:
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪
optimizer.step()
train_loss += loss.item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
train_acc += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
train_acc /= len(train_loader.dataset)
# 计算测试集上的损失和准确率
test_loss = 0
test_acc = 0
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(DEVICE), target.to(DEVICE)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
test_acc += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_acc /= len(test_loader.dataset)
# 更新 Best_ACC 并保存模型
if test_acc > Best_ACC:
Best_ACC = test_acc
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'Best_ACC': Best_ACC
}
torch.save(state, f'model_epoch_{epoch}_acc_{Best_ACC:.4f}.pth')
# 打印训练日志
print(f"Epoch {epoch}/{EPOCHS}: train_loss={train_loss:.4f} train_acc={train_acc:.4f} test_loss={test_loss:.4f} test_acc={test_acc:.4f}")
```
这里使用的是 CIFAR-10 数据集和一个简单的卷积神经网络模型,你需要将其替换成你自己的数据集和模型。
阅读全文
相关推荐
















