yolov5网络结构代码
时间: 2023-09-03 11:07:58 浏览: 98
yolov5网络框架及代码讲解
以下是YOLOv5网络结构的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, groups=1, bias=False):
super(Conv, self).__init__()
if padding is None:
padding = kernel_size // 2 if stride == 1 else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, shortcut=True, groups=1):
super(Bottleneck, self).__init__()
mid_channels = int(in_channels * 0.5)
self.conv1 = Conv(in_channels, mid_channels, kernel_size=1)
self.conv2 = Conv(mid_channels, in_channels, kernel_size=3, padding=1)
self.conv3 = Conv(in_channels, mid_channels, kernel_size=1)
self.conv4 = Conv(mid_channels, out_channels, kernel_size=3, padding=1)
self.shortcut = shortcut and in_channels == out_channels
if self.shortcut:
self.shortcut_conv = Conv(in_channels, out_channels, kernel_size=1)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
if self.shortcut:
identity = self.shortcut_conv(identity)
x += identity
return x
class YOLOv5(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv5, self).__init__()
self.backbone = nn.Sequential(
Conv(3, 32, kernel_size=3, stride=1),
Bottleneck(32, 64),
nn.MaxPool2d(2, 2),
Bottleneck(64, 128),
nn.MaxPool2d(2, 2),
Bottleneck(128, 256),
nn.MaxPool2d(2, 2),
Bottleneck(256, 512),
nn.MaxPool2d(2, 2),
Bottleneck(512, 1024),
)
self.neck = nn.Sequential(
Conv(1024, 512, kernel_size=1),
Conv(512, 1024, kernel_size=3, padding=1),
Conv(1024, 512, kernel_size=1),
Conv(512, 1024, kernel_size=3, padding=1),
Conv(1024, 512, kernel_size=1),
)
self.head = nn.Sequential(
Conv(512, 1024, kernel_size=3, padding=1),
nn.Conv2d(1024, num_classes, kernel_size=1)
)
def forward(self, x):
x = self.backbone(x)
x = self.neck(x)
x = self.head(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = torch.flatten(x, 1)
return x
model = YOLOv5()
```
请注意,这只是YOLOv5的基本网络结构示例,可能与实际的YOLOv5网络结构代码有所不同。实际的YOLOv5网络结构可能包含其他组件和层。这里的代码仅提供了一个大致的框架。
阅读全文