python属性加权聚合相似度算法,通过设置阈值实现中文实体对齐自动化,将合并阈值设置为 0.8,独立阈值设置为 0.5将两个实体进行对比的详细代码
时间: 2024-04-14 15:31:00 浏览: 168
以下是一个示例代码,用于实现中文实体对齐的属性加权聚合相似度算法,并通过设置阈值进行自动化对比。
```python
import numpy as np
from collections import Counter
import jieba
# 计算两个字符串的相似度
def string_similarity(str1, str2):
str1 = set(jieba.lcut(str1))
str2 = set(jieba.lcut(str2))
intersection = len(str1 & str2)
union = len(str1 | str2)
return intersection / union
# 计算属性相似度
def attribute_similarity(attr1, attr2):
if isinstance(attr1, str) and isinstance(attr2, str):
return string_similarity(attr1, attr2)
elif isinstance(attr1, list) and isinstance(attr2, list):
counter1 = Counter(attr1)
counter2 = Counter(attr2)
intersection = sum((counter1 & counter2).values())
union = sum((counter1 | counter2).values())
return intersection / union
else:
return 0
# 计算实体相似度
def entity_similarity(entity1, entity2, weights):
total_similarity = 0
for attr1, attr2, weight in zip(entity1, entity2, weights):
attr_similarity = attribute_similarity(attr1, attr2)
total_similarity += attr_similarity * weight
return total_similarity
# 对比两个实体并进行自动化实体对齐
def align_entities(entities1, entities2, merge_threshold, independent_threshold):
num_entities1 = len(entities1)
num_entities2 = len(entities2)
merge_indices = []
independent_indices = []
for i in range(num_entities1):
for j in range(num_entities2):
similarity = entity_similarity(entities1[i], entities2[j], weights=[1, 1, 0.5])
if similarity >= merge_threshold:
merge_indices.append((i, j))
elif similarity >= independent_threshold:
independent_indices.append((i, j))
return merge_indices, independent_indices
# 示例数据
entities1 = [
["张三", "30", ["男性", "工程师"]],
["李四", "25", ["女性", "医生"]],
["王五", "35", ["男性", "教师"]]
]
entities2 = [
["张三", "31", ["男性", "工程师"]],
["李四", "26", ["女性", "医师"]],
["赵六", "35", ["女性", "教师"]]
]
# 实体对比并进行自动化实体对齐
merge_threshold = 0.8
independent_threshold = 0.5
merge_indices, independent_indices = align_entities(entities1, entities2, merge_threshold, independent_threshold)
print("合并实体对比结果:")
for i, j in merge_indices:
print(f"实体1: {entities1[i]}, 实体2: {entities2[j]}")
print("\n独立实体对比结果:")
for i, j in independent_indices:
print(f"实体1: {entities1[i]}, 实体2: {entities2[j]}")
```
在上面的代码中,使用了中文分词工具jieba对字符串进行分词,然后计算分词后的字符串的相似度。其余部分与之前的示例代码相似。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行调整和改进。
阅读全文