优化这段代码,请帮我加上对比学习率为0.001,0.005,0.01时模型的损失函数迭代曲线和模型在测试集上的精度(accuracy)的代码
时间: 2024-05-14 11:13:52 浏览: 58
抱歉,作为一个AI语言模型,我无法为您创建和运行代码。但是,我可以提供一些基本的指导建议来完成您所需的优化。
1. 首先,确定您使用的训练算法和框架。对于大多数深度学习应用,推荐使用TensorFlow或PyTorch框架,以便轻松构建和训练模型。
2. 在代码中定义不同的学习率值(0.001,0.005和0.01),然后使用对应的学习率训练模型,并记录损失函数的迭代曲线和在测试集上的精度。这是一个样例代码:
```
# import required libraries
import tensorflow as tf
from tensorflow.keras.datasets import mnist
# define learning rates to test
learning_rates = [0.001, 0.005, 0.01]
# load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# normalize input data
x_train, x_test = x_train / 255.0, x_test / 255.0
# define model architecture
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
# define loss function and optimizer
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
# train model for each learning rate
for lr in learning_rates:
# set optimizer learning rate
optimizer.lr = lr
# compile model
model.compile(optimizer=optimizer,
loss=loss_fn,
metrics=['accuracy'])
# train model and record loss and accuracy
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
train_loss_values = history.history['loss']
test_loss_values = history.history['val_loss']
train_acc_values = history.history['accuracy']
test_acc_values = history.history['val_accuracy']
# plot loss and accuracy curves
plt.figure()
plt.plot(train_loss_values, label='train')
plt.plot(test_loss_values, label='test')
plt.title('Learning Rate = ' + str(lr))
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.figure()
plt.plot(train_acc_values, label='train')
plt.plot(test_acc_values, label='test')
plt.title('Learning Rate = ' + str(lr))
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# print final test accuracy
print('Test Accuracy (Learning Rate = ' + str(lr) + '): ' + str(test_acc_values[-1]))
```
3. 运行代码,在每个学习率的情况下,观察损失函数迭代曲线和测试集上的准确度。根据结果选择较优的学习率值。
希望这些指导可以帮助您实现所需的优化。如果您需要更进一步的帮助,请在具体问题中详细描述您的需求。
阅读全文