c语言设计实现抽象数据类型“有理数”,基本操作包括加减乘除以及求有理数分子和分母
时间: 2023-03-28 19:03:45 浏览: 192
可以回答这个问题。C 语言可以通过结构体来实现有理数的抽象数据类型,其中结构体包含分子和分母两个整型成员变量。基本操作可以通过函数来实现,例如加法可以定义一个函数,接收两个有理数作为参数,返回它们的和。求有理数分子和分母可以分别定义两个函数,分别返回结构体中的分子和分母成员变量。
相关问题
用C语言实现有理数抽象类型实现有理数的创建和输出包括有理数的加减乘除
您好,我可以回答您的问题。以下是用 C 语言实现有理数抽象类型的代码:
```c
#include <stdio.h>
typedef struct {
int numerator; // 分子
int denominator; // 分母
} Rational;
// 求两个整数的最大公约数
int gcd(int a, int b) {
if (b == ) {
return a;
} else {
return gcd(b, a % b);
}
}
// 化简有理数
void simplify(Rational *r) {
int g = gcd(r->numerator, r->denominator);
r->numerator /= g;
r->denominator /= g;
}
// 创建有理数
Rational create_rational(int numerator, int denominator) {
Rational r = {numerator, denominator};
simplify(&r);
return r;
}
// 输出有理数
void print_rational(Rational r) {
printf("%d/%d", r.numerator, r.denominator);
}
// 加法
Rational add_rational(Rational r1, Rational r2) {
int numerator = r1.numerator * r2.denominator + r2.numerator * r1.denominator;
int denominator = r1.denominator * r2.denominator;
return create_rational(numerator, denominator);
}
// 减法
Rational sub_rational(Rational r1, Rational r2) {
int numerator = r1.numerator * r2.denominator - r2.numerator * r1.denominator;
int denominator = r1.denominator * r2.denominator;
return create_rational(numerator, denominator);
}
// 乘法
Rational mul_rational(Rational r1, Rational r2) {
int numerator = r1.numerator * r2.numerator;
int denominator = r1.denominator * r2.denominator;
return create_rational(numerator, denominator);
}
// 除法
Rational div_rational(Rational r1, Rational r2) {
int numerator = r1.numerator * r2.denominator;
int denominator = r1.denominator * r2.numerator;
return create_rational(numerator, denominator);
}
int main() {
Rational r1 = create_rational(1, 2);
Rational r2 = create_rational(2, 3);
Rational r3 = add_rational(r1, r2);
Rational r4 = sub_rational(r1, r2);
Rational r5 = mul_rational(r1, r2);
Rational r6 = div_rational(r1, r2);
printf("r1 = ");
print_rational(r1);
printf("\n");
printf("r2 = ");
print_rational(r2);
printf("\n");
printf("r1 + r2 = ");
print_rational(r3);
printf("\n");
printf("r1 - r2 = ");
print_rational(r4);
printf("\n");
printf("r1 * r2 = ");
print_rational(r5);
printf("\n");
printf("r1 / r2 = ");
print_rational(r6);
printf("\n");
return ;
}
```
希望能够帮到您!
试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义,使用c语言实现,要求能实现加减乘除,并返回数据结果
首先,让我们定义两个抽象数据类型:复数(Complex Numbers)和有理数(Rational Numbers)。这两个ADT(Abstract Data Type)都包含一个数值部分以及相关的操作。
**抽象数据类型:复数 (Complex)**
```cpp
typedef struct Complex {
double real; // 实部
double imag; // 虚部
} Complex;
```
对于复数,我们可以实现基本的算术运算:
```cpp
// 加法
Complex add(Complex c1, Complex c2) {
return (Complex) {c1.real + c2.real, c1.imag + c2.imag};
}
// 减法
Complex subtract(Complex c1, Complex c2) {
return (Complex) {c1.real - c2.real, c1.imag - c2.imag};
}
// 乘法
Complex multiply(Complex c1, Complex c2) {
double real = c1.real * c2.real - c1.imag * c2.imag;
double imag = c1.real * c2.imag + c1.imag * c2.real;
return (Complex) {real, imag};
}
// 除法
Complex divide(Complex c1, Complex c2) {
double denominator = c2.real * c2.real + c2.imag * c2.imag;
if (denominator == 0)
return NULL; // 防止除以零
double real = (c1.real * c2.real + c1.imag * c2.imag) / denominator;
double imag = (c1.imag * c2.real - c1.real * c2.imag) / denominator;
return (Complex) {real, imag};
}
```
**抽象数据类型:有理数 (Rational)**
```cpp
typedef struct Rational {
int numerator; // 分子
int denominator; // 分母
} Rational;
// 简化分数(如果有共同因子)
void simplify(Rational* r) {
int gcd = __gcd(r->numerator, r->denominator);
r->numerator /= gcd;
r->denominator /= gcd;
}
// 加法
Rational add(Rational r1, Rational r2) {
int new_numerator = r1.numerator * r2.denominator + r2.numerator * r1.denominator;
int new_denominator = r1.denominator * r2.denominator;
simplify(&new_numerator, &new_denominator);
return (Rational) {new_numerator, new_denominator};
}
// 减法
Rational subtract(Rational r1, Rational r2) {
int new_numerator = r1.numerator * r2.denominator - r2.numerator * r1.denominator;
int new_denominator = r1.denominator * r2.denominator;
simplify(&new_numerator, &new_denominator);
return (Rational) {new_numerator, new_denominator};
}
// 乘法
Rational multiply(Rational r1, Rational r2) {
int new_numerator = r1.numerator * r2.numerator;
int new_denominator = r1.denominator * r2.denominator;
simplify(&new_numerator, &new_denominator);
return (Rational) {new_numerator, new_denominator};
}
// 除法
Rational divide(Rational r1, Rational r2) {
if (r2.denominator == 0)
return NULL; // 防止除以零
int new_numerator = r1.numerator * r2.denominator;
int new_denominator = r1.denominator;
simplify(&new_numerator, &new_denominator);
return (Rational) {new_numerator, new_denominator};
}
```
阅读全文