用jupyter爬去豆瓣top10
时间: 2023-08-24 22:47:21 浏览: 100
好的,我可以帮你解决这个问题。首先,你需要安装requests和beautifulsoup4库。你可以在jupyter notebook中使用以下命令进行安装:
```
!pip install requests beautifulsoup4
```
然后,你可以使用以下代码来爬取豆瓣电影top10的信息:
```python
import requests
from bs4 import BeautifulSoup
url = 'https://movie.douban.com/top250'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
movie_list = soup.find('ol', class_='grid_view').find_all('li')
for movie in movie_list[:10]:
title = movie.find('span', class_='title').text
rating = movie.find('span', class_='rating_num').text
print(f'{title} {rating}')
```
这段代码将输出豆瓣电影top10的电影名称和评分。请注意,爬取网站的信息可能会受到网站的反爬虫机制的限制,所以请遵守网站的爬虫规则。
相关问题
jupyter爬虫获取豆瓣评论
在Jupyter中进行爬虫获取豆瓣评论的步骤如下:
1. 导入所需的库:
```python
import requests
from bs4 import BeautifulSoup
```
2. 发送HTTP请求获取网页内容:
```python
url = 'https://movie.douban.com/subject/1292052/comments?status=P'
response = requests.get(url)
```
3. 使用BeautifulSoup解析网页内容:
```python
soup = BeautifulSoup(response.text, 'html.parser')
```
4. 找到评论所在的HTML元素,并提取评论内容:
```python
comments = soup.find_all('span', class_='short')
for comment in comments:
print(comment.text)
```
完整的代码如下:
```python
import requests
from bs4 import BeautifulSoup
url = 'https://movie.douban.com/subject/1292052/comments?status=P'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
comments = soup.find_all('span', class_='short')
for comment in comments:
print(comment.text)
```
使用python爬虫获取豆瓣top10
好的,以下是获取豆瓣电影Top10的Python爬虫代码:
```python
import requests
from bs4 import BeautifulSoup
url = 'https://movie.douban.com/top250'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
r = requests.get(url, headers=headers)
soup = BeautifulSoup(r.text, 'html.parser')
movie_list = soup.find('ol', class_='grid_view').find_all('li')
for movie in movie_list:
title = movie.find('span', class_='title').text
rating = movie.find('span', class_='rating_num').text
print(title, rating)
```
代码解析:
1. 首先,我们需要导入requests库和BeautifulSoup库
2. 然后,我们定义了目标URL和请求头headers
3. 接着,我们发送了一个GET请求,并使用BeautifulSoup解析了返回的HTML页面
4. 我们使用find方法找到了包含电影列表的ol标签,并从中提取了每个电影的li标签
5. 最后,我们循环遍历了每个电影,并使用find方法从中提取了电影的标题和评分,并将它们输出到控制台上。
希望对你有所帮助!
阅读全文