spark 余弦相似度
时间: 2023-07-05 09:21:19 浏览: 122
基于Spark的电影余弦相似度计算+源代码+文档说明
余弦相似度是一种用于度量两个向量之间相似度的方法。在Spark中,可以使用MLlib库中的CosineSimilarity来计算两个向量之间的余弦相似度。下面是一个使用Spark MLlib计算余弦相似度的示例代码:
```scala
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.DenseVector
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.feature.StandardScaler
import org.apache.spark.ml.linalg.Vectors
val data = Seq(
(0, "hello world"),
(1, "hello spark"),
(2, "hello hadoop"),
(3, "hello hadoop spark"),
(4, "hello world hadoop")
).toDF("id", "text")
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
val wordsData = tokenizer.transform(data)
val hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("rawFeatures")
.setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
val vectors = rescaledData.select("features").rdd.map(r => r(0).asInstanceOf[Vector]).collect()
val denseVectors = vectors.map(v => new DenseVector(v.toArray))
val normalize = new Normalizer()
.setInputCol("features")
.setOutputCol("normFeatures")
.setP(2.0)
val normalizedData = normalize.transform(rescaledData)
val scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
.setWithStd(true)
.setWithMean(false)
val scaledData = scaler.fit(normalizedData).transform(normalizedData)
val bVectors = spark.sparkContext.broadcast(denseVectors)
val cosineSimilarity = scaledData.map { row =>
val vector = row.getAs[Vector]("scaledFeatures")
val bDenseVectors = bVectors.value
val similarities = bDenseVectors.map(dv => (dv, dv.dot(vector))).sortBy(-_._2)
(row.getAs[Int]("id"), similarities)
}
cosineSimilarity.collect().foreach(println)
```
该示例代码使用Tokenizer将文本数据分词,并使用HashingTF将词汇转换为特征向量。然后,使用IDF对特征向量进行加权,最后使用Normalizer和StandardScaler对特征向量进行标准化和缩放。最后,使用Spark的广播变量,将所有特征向量存储在内存中,并使用map函数计算每个向量与所有其他向量之间的余弦相似度。
阅读全文