用c语言基于贪心算法编写哈夫曼编码的代码,输入一串字符串,其中频率为字符串中该字母出现次数,计算一串字符串的编码长度

时间: 2023-11-22 07:56:56 浏览: 38
以下是基于贪心算法的哈夫曼编码的 C 语言代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 // 定义哈夫曼树结构体 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode** array; }; // 创建一个新的哈夫曼树节点 struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } // 创建一个空的最小堆 struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } // 交换两个哈夫曼节点 void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* temp = *a; *a = *b; *b = temp; } // 堆化函数 void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } // 判断堆是否只剩下一个节点 int isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } // 取出堆中最小的节点 struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } // 插入节点到堆中 void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } // 判断节点是否为叶子节点 int isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } // 创建并构建哈夫曼树 struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) insertMinHeap(minHeap, newNode(data[i], freq[i])); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } // 输出哈夫曼编码 void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); for (int i = 0; i < top; ++i) printf("%d", arr[i]); printf("\n"); } } // 构建哈夫曼编码 void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } // 计算一串字符串的编码长度 int calculateCodeLength(char data[], int freq[], int size) { int codeLength = 0; struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); for (int i = 0; i < size; i++) { for (int j = 0; j < top; j++) { if (root->data == data[i]) { codeLength += (arr[j] + 1); } } } return codeLength; } int main() { char data[] = "Huffman coding"; int freq[] = { 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 }; int size = sizeof(data) / sizeof(data[0]); printf("The Huffman codes are:\n"); HuffmanCodes(data, freq, size); int codeLength = calculateCodeLength(data, freq, size); printf("The code length of the string is: %d\n", codeLength); return 0; } ``` 在代码中,函数 `calculateCodeLength` 计算了一串字符串的编码长度,即将字符串中每个字符的哈夫曼编码长度加起来。

相关推荐

最新推荐

recommend-type

C语言中压缩字符串的简单算法小结

主要介绍了C语言中可用于实现字符串压缩的简单算法小结,列举了包括哈夫曼算法等三个核心的程序实现算法,需要的朋友可以参考下
recommend-type

哈夫曼编码(贪心算法)报告.doc

算法设计与分析实验报告,附已通过源码,供学习参考,共勉♪ 目录摘要如下: 1.问题描述 2.实验目的 3.实验原理 4.实验设计 (包括输入格式、算法、输出格式) 5.实验结果与分析 (除了截图外,实验结果还用...
recommend-type

用贪心算法解哈夫曼编码问题(计算机算法设计与分析)

一.介绍贪心算法的一般步骤: 1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 二. 贪心算法适合...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这