F.leaky_relu(self.conv(x), negative_slope=0.2)这段代码什么意思
时间: 2024-04-18 13:32:11 浏览: 86
这段代码是一个卷积层后使用了激活函数LeakyReLU的操作。首先,`self.conv(x)`表示对输入`x`进行卷积操作,返回卷积结果。然后,`F.leaky_relu()`表示对卷积结果应用LeakyReLU激活函数,其中`negative_slope=0.2`表示负斜率为0.2,即当输入值小于0时,会乘以0.2。最终的输出结果是经过LeakyReLU激活函数处理后的张量。
相关问题
def forward(self, x): xyz = x.permute(0, 2, 1) batch_size, _, _ = x.size() # B, D, N x = F.relu(self.bn1(self.conv1(x))) # B, D, N x = F.relu(self.bn2(self.conv2(x))) x = x.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=512, radius=0.15, nsample=32, xyz=xyz, points=x) feature_0 = self.gather_local_0(new_feature) feature = feature_0.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=256, radius=0.2, nsample=32, xyz=new_xyz, points=feature) feature_1 = self.gather_local_1(new_feature) x = self.pt_last(feature_1) x = torch.cat([x, feature_1], dim=1) x = self.conv_fuse(x) x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1) x = F.leaky_relu(self.bn6(self.linear1(x)), negative_slope=0.2) x = self.dp1(x) x = F.leaky_relu(self.bn7(self.linear2(x)), negative_slope=0.2) x = self.dp2(x) x = self.linear3(x) return x
这段代码是一个PyTorch的神经网络模型的前向传播函数,用于对输入x做推理得到输出结果。该模型为PointNet++,用于处理点云数据。该函数的输入为点云数据x,输出为该点云数据的特征向量表示。具体实现过程中,该模型对点云数据进行了一系列处理,包括对点云数据进行卷积、池化等操作,最终得到点云数据的特征向量表示。
class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.LeakyReLU = nn.LeakyReLU(negative_slope=0.1) self.relu = nn.ReLU(inplace=True) self.elu = nn.ELU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): # out = F.ReLU(self.bn1(self.conv1(x))) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) return out 在self.layer4(out)和 self.avgpool(out)之间加CBAM
要在 `self.layer4(out)` 和 `self.avgpool(out)` 之间CBAM模块,可以按照以下步骤进行修改:
首先,导入CBAM模块的相关库:
```python
from cbam import CBAM
```
然后,在ResNet18_2D类中添加CBAM模块:
```python
self.cbam = CBAM(512) # 添加CBAM模块,输入通道数为512
```
最后,在forward方法中使用CBAM模块:
```python
out = self.layer4(out)
out = self.cbam(out) # 使用CBAM模块
out = self.avgpool(out)
```
确保在使用CBAM模块之前,已经定义了CBAM类并导入相应的库。
这样,你就在ResNet18_2D模型中成功添加了CBAM模块。请注意,这仅仅是示例代码,你可能需要根据实际情况自行进行调整和修改。
阅读全文