GAT模型的代码
时间: 2024-02-21 09:58:48 浏览: 178
以下是一个简单的GAT模型的代码实现,包括输入层、多头注意力层和输出层:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
class GATConv(MessagePassing):
def __init__(self, in_channels, out_channels, heads=1, concat=True, bias=True, **kwargs):
super(GATConv, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.weight = nn.Parameter(torch.Tensor(in_channels, heads * out_channels))
if bias:
self.bias = nn.Parameter(torch.Tensor(heads * out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
def forward(self, x, edge_index):
x = torch.matmul(x, self.weight)
return self.propagate(edge_index, x=x)
def message(self, x_j, edge_index, size_i):
alpha = (x_j * self.weight.view(self.in_channels, self.heads, self.out_channels)).sum(dim=-1)
alpha = F.leaky_relu(alpha, negative_slope=0.2)
alpha = self.softmax(alpha, edge_index[0])
return x_j * alpha.view(-1, self.heads, 1)
def update(self, aggr_out):
if self.concat:
return aggr_out.view(-1, self.heads * self.out_channels)
else:
return aggr_out.mean(dim=1)
class GAT(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels, heads=1, depth=1, **kwargs):
super(GAT, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.heads = heads
self.depth = depth
self.convs = nn.ModuleList()
self.convs.append(GATConv(in_channels, hidden_channels, heads=heads, **kwargs))
for i in range(depth - 2):
self.convs.append(GATConv(hidden_channels * heads, hidden_channels, heads=heads, **kwargs))
self.convs.append(GATConv(hidden_channels * heads, out_channels, heads=1, concat=False, **kwargs))
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
def forward(self, x, edge_index):
x = F.dropout(x, p=0.5, training=self.training)
for i in range(self.depth - 1):
x = F.elu(self.convs[i](x, edge_index))
x = F.dropout(x, p=0.5, training=self.training)
x = self.convs[-1](x, edge_index)
return x
```
其中,`GATConv`是GAT的核心模块,它继承了PyTorch Geometric中的`MessagePassing`类,用于实现图卷积操作。`GAT`则是多层GAT的模型实现。具体实现过程可以参考注释。
阅读全文