Data Structure=(D,S)
时间: 2024-08-16 16:04:01 浏览: 30
在计算机科学中,Data Structure(数据结构)是一种组织数据的方式,它将数据以特定的形式存储和管理,以便高效地访问、插入和删除。公式(D,S)可以理解为描述数据结构的一般形式:
- D(Data)代表数据,即存储的对象,可能是数字、字符串、数组、列表、图等各种类型的元素。
- S(Structure)则是指如何组织这些数据,也就是数据的存储方式和数据之间的关联规则。这包括各种数据结构的算法设计,如数组(Array)、链表(Linked List)、堆(Heap)、栈(Stack)、队列(Queue)、树(Tree)、图(Graph)、哈希表(Hash Table)等。
不同的数据结构适用于不同的场景,选择合适的数据结构可以大大提高程序的效率。例如,如果需要快速查找某个元素,可能选择哈希表;如果需要按顺序访问元素并保持元素的插入顺序,那么双向链表会是个好选择。
相关问题
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
Implement the hash table (with chaining) data structure. Your table should be able to grow and shrink based on how many items are there. contain at least the following methods: * __init__: initialize the data structure * hash: implement a hash function that is chosen from a universal hash family * search: search for a key in the table, return True if found, False otherwise * insert: insert a key into the table if it is not already in there * delete: delete a key from the table * size: return the number of buckets in your hash table
Sure, I can help you with that. Here's a possible implementation of a hash table with chaining:
```python
import random
class HashTable:
def __init__(self, initial_size=10, load_factor=0.7):
self.buckets = [[] for _ in range(initial_size)]
self.load_factor = load_factor
self.size = 0
def hash(self, key):
# A simple universal hash function using random parameters
a = random.randint(1, 10**9)
b = random.randint(0, 10**9)
p = 10**9 + 7
return (a * hash(key) + b) % p % len(self.buckets)
def search(self, key):
bucket = self.buckets[self.hash(key)]
for k, v in bucket:
if k == key:
return True
return False
def insert(self, key, value=None):
if self.size / len(self.buckets) >= self.load_factor:
self._resize(2 * len(self.buckets))
bucket = self.buckets[self.hash(key)]
for i, (k, v) in enumerate(bucket):
if k == key:
bucket[i] = (key, value)
return
bucket.append((key, value))
self.size += 1
def delete(self, key):
bucket = self.buckets[self.hash(key)]
for i, (k, v) in enumerate(bucket):
if k == key:
del bucket[i]
self.size -= 1
if self.size / len(self.buckets) <= 1 - self.load_factor:
self._resize(len(self.buckets) // 2)
return
raise KeyError(key)
def _resize(self, new_size):
new_buckets = [[] for _ in range(new_size)]
for bucket in self.buckets:
for k, v in bucket:
new_buckets[self.hash(k)].append((k, v))
self.buckets = new_buckets
def __len__(self):
return self.size
```
This implementation uses a list of buckets, where each bucket is a list of key-value pairs. The hash function is a simple universal hash function that uses random parameters to avoid collisions. The load factor determines when the table should be resized (either doubled or halved) to maintain a reasonable level of occupancy. The `search`, `insert`, `delete`, and `size` methods are straightforward operations on the buckets. The `__len__` method returns the number of key-value pairs in the table.
Note that this implementation doesn't handle collisions beyond chaining, and doesn't support efficient iteration over all key-value pairs in the table. There are many possible improvements and variations depending on the specific use case and performance requirements.
阅读全文